А. Гладкий        13.03.2023   

§16.Магнитное поле. Закон взаимодействия токов

Сила Ампера

На проводник с током, находящийся в магнитном поле, действует сила, равная

F = I·L·B·sina

I - сила тока в проводнике;

B - модуль вектора индукции магнитного поля;

L - длина проводника, находящегося в магнитном поле;

a - угол между вектором магнитного поля инаправлением тока в проводнике.

Силу, действующую на проводник с током в магнитном поле, называют силой Ампера.

Максимальная сила Ампера равна:

Ей соответствует a = 900.

Направление силы Ампера определяется по правилу левой руки: если левую руку расположить так, чтобы перпендикулярная составляющая вектора магнитной индукции В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующей на отрезок проводника с током, то есть силы Ампера.

В ходе эксперимента мы наблюдали силу, которую нельзя обЪяснить в рамках электростатики. Когда в двух параллельных проводниках ток идет только в одном направлении, между ними существует сила притяжения. Когда токи идут в противоположных направлениях, провода отталкиваются друг от друга.

Фактическое значение этой силы действующей между параллельными токами, и ее зависимость от расстояния между проводами могут быть измерены с помощью простого устройства в виде весов. В виду отсутствия таковых, примим на веру, результаты опытов которые показывают, что эта сила обратно пропорциональна расстоянию между осями проводов: F (1/r).

Поскольку эта сила должна быть обусловлена каким – то влиянием, распространяющимся от одного провода к другому, то такая цилиндрическая геометрия создаст силу, зависящую обратно пропорционально первой степени расстояния. Вспомним, что электростатическое поле распространяется от заряженного провода тоже с зависимостью от расстояния вида 1/r.

Исходя из опытов видно также что сила взаимодействия между проводами зависит от произведения протекающих по ним токов. Из симметрии можно сделать вывод что если эта сила пропорциональна I1 , она должна быть пропорциональна и I2. То, что эта сила прямо пропорциональна каждому из токов, представляет собой просто экспериментальный факт.

Добавляя коэффициент пропорциональности, можем теперь записать формулу для силы взаимодействия двух параллельных проводов: F (l/r, F (I1 I2); следовательно,

Коэффициент пропорциональности будет содержать связанный с ним множетель 2(, не в саму константу.

Взаимодействие между двумя парралельными проводами выражается в виде силы на еденицу длины. Чем длиннее провода тем больше сила:

Расстояние r между осями проводов F/l измеряется в метрах. Сила на 1 метр длины измеряется в ньютонах на метр, и токи I1 I2 – в амперах.

В школьном курсе физики первым дается определение кулону через ампер, не давая при этом определения амперу, и затем принимается на веру значение константы, появляющейся в законе Кулона.

Только теперь возможно перейти ктому, чтобы рассмотреть определение ампера.

Когда полагается что уравнение для F/l определяет ампер. Константа называется магнитной постоянной. Она аналогична константе 0 - электрической постоянной. Однако в присвоении значений этим двум константам имеется операционное различие. Мы можем выбирать для какой-нибудь одной из них любое произвольное значение. Но затем вторая константа должна определяться на опыте, поскольку кулон и ампер связаны между собой.

Исходя теперь из выше описанной формулы значение ампера можно выразить словами: если взаимодействие на 1м длины двух длинных параллельных проводов, находящихся на расстоянии 1м друг от друга, равна 2*10-7 Н, то ток в каждом проводе равен 1А.

В случае, когда взаимодействующие провода находятся перпендикулярно друг к другу, имеется лиш очень небольшая область влияния, где провода проходят близко друг к другу, и поэтому можно ожидать, что будет мала и сила взаимодействия между проводами. На самом деле эта сила равна нулю. Поскольку силу можно считать положительной, когда токи параллельны, и отрицательной, когда токи антипараллельны, вполне правдоподобно, что эта сила должна быть равна нулю, когда провода перпендикулярны, ибо это нулевое значение лежит посередине между положительными и отрицательными значениями.

Единица измерения в СИ - 1 Ампер (А) = 1 Кулон / секунду.

Для измерения силы тока используют специальный прибор - амперметр (для приборов, предназначенных для измерения малых токов, также используются названия миллиамперметр, микроамперметр, гальванометр). Его включают в разрыв цепи в том месте, где нужно измерить силу тока. Основные методы измерения силы тока: магнитоэлектрический, электромагнитный и косвенный (путём измерения вольтметром напряжения на известном сопротивлении).

Магнитное поле (см. § 109) оказывает на рамку с током ориентирующее действие. Следовательно, вращающий момент, ис­пытываемый рамкой, есть результат дейст­вия сил на отдельные ее элементы. Обоб­щая результаты исследования действия магнитного поля на различные проводники с током, Ампер установил, что сила dF , с которой магнитное поле действует на элемент проводника dl с током, находяще­гося в магнитном поле, прямо пропорцио­нальна силе тока I в проводнике и век­торному произведению элемента длиной dl проводника на магнитную индук­цию В:

dF = I . (111.1)

Направление вектора dF может быть найдено, согласно (111.1), по общим пра­вилам векторного произведения, откуда следует правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор В, а четыре вытянутых пальца расположить по направлению тока в проводнике, то отогнутый большой палец покажет направление силы, действующей на ток.

Модуль силы Ампера (см. (111.1)) вычисляется по формуле

dF = IB dl sin, (111.2)

где a - угол между векторами dl и В.

Закон Ампера применяется для опре­деления силы взаимодействия двух токов. Рассмотрим два бесконечных прямолиней­ных параллельных тока I 1 и I 2 (направле­ния токов указаны на рис. 167), расстоя­ние между которыми равно R . Каждый из проводников создает магнитное поле, ко­торое действует по закону Ампера на дру­гой проводник с током. Рассмотрим, с ка­кой силой действует магнитное поле тока I 1 на элемент dl второго проводника с то­ком I 2 . Ток I 1 создает вокруг себя магнит­ное поле, линии магнитной индукции кото­рого представляют собой концентрические окружности. Направление вектора b 1 за­дается правилом правого винта, его мо­дуль по формуле (110.5) равен

Направление силы dF 1 , с которой поле B 1 действует на участок dl второго тока, определяется по правилу левой руки и указано на рисунке. Модуль силы, со­гласно (111.2), с учетом того, что угол  между элементами тока I 2 и вектором B 1 прямой, равен

dF 1 =I 2 B 1 dl , или, подставляя значение для В 1 , получим

Рассуждая аналогично, можно пока­зать, что сила dF 2 , с которой магнитное поле тока I 2 действует на элемент dl пер­вого проводника с током I 1 , направлена в противоположную сторону и по модулю равна

Сравнение выражений (111.3) и (111.4) показывает, что

т. е. два параллельных тока одинакового направления притягиваются друг к другу с силой

Если токи имеют противоположные на­правления, то, используя правило левой руки, можно показать, что между ними действует сила отталкивания, определяе­мая формулой (111.5).

45. Закон Фарадея и его вывод из закона сохранения энергии

Обобщая результаты своих многочислен­ных опытов, Фарадей пришел к количе­ственному закону электромагнитной ин­дукции. Он показал, что всякий раз, когда происходит изменение сцепленного с кон­туром потока магнитной индукции, в контуре возникает индукционный ток; возник­новение индукционного тока указывает на наличие в цепи электродвижущей силы, называемой электродвижущей силой элек­тромагнитной индукции. Значение индук­ционного тока, а следовательно, и э. д. с, электромагнитной индукции ξ i определя­ются только скоростью изменения магнит­ного потока, т. е.

Теперь необходимо выяснить знак ξ i . В § 120 было показано, что знак магнитно­го потока зависит от выбора положитель­ной нормали к контуру. В свою очередь, положительное направление нормали свя­зано с током правилом правого винта (см. § 109). Следовательно, выбирая опре­деленное положительное направление нор­мали, мы определяем как знак потока маг­нитной индукции, так и направление тока и э.д.с. в контуре. Пользуясь этими пред­ставлениями и выводами, можно соответ­ственно прийти к формулировке закона электромагнитной индукции Фарадея: какова бы ни была причина изменения потока магнитной индукции, охватыва­емого замкнутым проводящим контуром, возникающая в контуре э.д.с.

Знак минус показывает, что увеличе­ние потока (dФ/dt>0) вызывает э.д.с.

ξξ i <0, т. е. поле индукционного тока на­правлено навстречу потоку; уменьшение

потока (dФ/dt<0) вызывает ξ i >0,

т. е. направления потока и поля индукци­онного тока совпадают. Знак минус в фор­муле (123.2) является математическим выражением правила Ленца - общего правила для нахождения направления ин­дукционного тока, выведенного в 1833 г.

Правило Ленца: индукционный ток в контуре имеет всегда такое направление, что создаваемое им магнитное поле препятствует изменению магнитного по­тока, вызвавшего этот индукционный ток.

Закон Фарадея (см. (123.2)) может быть непосредственно получен из закона сохранения энергии, как это впервые сде­лал Г. Гельмгольц. Рассмотрим проводник с током I , который помещен в однородное магнитное поле, перпендикулярное плоско­сти контура, и может свободно переме­щаться (см. рис. 177). Под действием си­лы Ампера F , направление которой пока­зано на рисунке, проводник перемещается на отрезок dx . Таким образом, сила Ампе­ра производит работу (см.(121.1)) dA =I dФ, где dФ - пересеченный проводни­ком магнитный поток.

Если полное сопротивление контура равно R , то, согласно закону сохранения энергии, работа источника тока за вре­мя dt (ξIdt ) будет складываться из рабо­ты на джоулеву теплоту (I 2 Rdt ) и работы по перемещению проводника в магнитном поле (I dФ):

где-dФ/dt=ξ i есть не что иное, как закон Фарадея (см. (123.2)).

Закон Фарадея можно сформулиро­вать еще таким образом: э.д.с. ξ i элек­тромагнитной индукции в контуре числен­но равна и противоположна по знаку ско­рости изменения магнитного потока сквозь поверхность, ограниченную этим конту­ром. Этот закон является универсальным: э.д.с. ξ i не зависит от способа изменения магнитного потока.

Э.д.с. электромагнитной индукции выражается в вольтах. Действительно, учитывая, что единицей магнитного потока является вебер (Вб), получим

Какова природа э.д.с. электромагнит­ной индукции? Если проводник (подвиж­ная перемычка контура на рис. 177) движется в постоянном магнитном поле, то сила Лоренца, действующая на заряды внутри проводника, движущиеся вместе с проводником, будет направлена противо­положно току, т. е. она будет создавать в проводнике индукционный ток противо­положного направления (за направление электрического тока принимается движе­ние положительных зарядов). Таким обра­зом, возбуждение э.д.с. индукции при движении контура в постоянном магнит­ном поле объясняется действием силы Ло­ренца, возникающей при движении про­водника.

Согласно закону Фарадея, возникнове­ние э.д.с. электромагнитной индукции возможно и в случае неподвижного кон­тура, находящегося в переменном магнит­ном поле. Однако сила Лоренца на непод­вижные заряды не действует, поэтому в данном случае ею нельзя объяснить воз­никновение э.д.с. индукции. Максвелл для объяснения э.д.с. индукции в непод­вижных проводниках предположил, что всякое переменное магнитное поле воз­буждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в проводнике. Циркуляция векто­ра Е В этого поля по любому неподвижному контуру L проводника представляет собой э.д.с. электромагнитной индукции:

47. . Индуктивность контура. Самоиндукция

Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное по­ле, индукция которого, по закону Био - Савара-Лапласа (см. (110.2)), пропор­циональна току. Сцепленный с контуром магнитный поток Ф поэтому пропорциона­лен току I в контуре:

Ф= LI , (126.1)

где коэффициент пропорциональности L называется индуктивностью контура.

При изменении силы тока в контуре будет изменяться также и сцепленный с ним магнитный поток; следовательно, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в прово­дящем контуре при изменении в нем силы тока называется самоиндукцией.

Из выражения (126.1) определяется единица индуктивности генри (Гн): 1 Гн - индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб:

1 Гн=1 Вб/А=1В с/А.

Рассчитаем индуктивность бесконечно длинного соленоида. Согласно (120.4), полный магнитный поток через соленоид

(потокосцепление) равен 0(N 2 I / l )S . Под­ставив это выражение в формулу (126.1), получим

т. е. индуктивность соленоида зависит от числа витков соленоида N , его длины l , площади S и магнитной проницаемости  вещества, из которого изготовлен сердеч­ник соленоида.

Можно показать, что индуктивность контура в общем случае зависит только от геометрической формы контура, его разме­ров и магнитной проницаемости той среды, в которой он находится. В этом смысле индуктивность контура - аналог электри­ческой емкости уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектриче­ской проницаемости среды (см. §93).

Применяя к явлению самоиндукции закон Фарадея (см. (123.2)), получим, что э.д.с. самоиндукции

Если контур не деформируется и магнит­ная проницаемость среды не изменяется (в дальнейшем будет показано, что по­следнее условие выполняется не всегда), то L =const и

где знак минус, обусловленный правилом Ленца, показывает, что наличие индуктив­ности в контуре приводит к замедлению изменения тока в нем.

Если ток со временем возрастает, то

dI/dt>0 и ξ s <0, т. е. ток самоиндукции

направлен навстречу току, обусловленно­му внешним источником, и тормозит его возрастание. Если ток со временем убывает, то dI/dt<0 и ξ s > 0, т. е. индукционный

ток имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание. Таким образом, контур, об­ладая определенной индуктивностью, при­обретает электрическую инертность, за­ключающуюся в том, что любое изменение тока тормозится тем сильнее, чем больше индуктивность контура.

59. Уравнения Максвелла для электромагнитного поля

Введение Максвеллом понятия тока сме­щения привело его к завершению создан­ной им единой макроскопической теории электромагнитного поля, позволившей с единой точки зрения не только объяснить электрические и магнитные явления, но и предсказать новые, существование кото­рых было впоследствии подтверждено.

В основе теории Максвелла лежат рас­смотренные выше четыре уравнения:

1. Электрическое поле (см. § 137) мо­жет быть как потенциальным (e q), так и вихревым (Е B), поэтому напряженность суммарного поля Е =Е Q +Е B . Так как циркуляция вектора e q равна нулю (см. (137.3)), а циркуляция вектора Е B оп­ределяется выражением (137.2), то цир­куляция вектора напряженности суммар­ного поля

Это уравнение показывает, что источни­ками электрического поля могут быть не только электрические заряды, но и меняю­щиеся во времени магнитные поля.

2. Обобщенная теорема о циркуляции вектора Н (см. (138.4)):

Это уравнение показывает, что магнит­ные поля могут возбуждаться либо дви­жущимися зарядами (электрическими то­ками), либо переменными электрическими полями.

3. Теорема Гаусса для поля D :

Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плот­ностью , то формула (139.1) запишется в виде

4. Теорема Гаусса для поля В (см. (120.3)):

Итак, полная система уравнений Максвел­ла в интегральной форме:

Величины, входящие в уравнения Мак­свелла, не являются независимыми и меж­ду ними существует следующая связь (изотропные не сегнетоэлектрические и не ферромагнитные среды):

D = 0 E ,

В=  0 Н,

j =E ,

где  0 и  0 - соответственно электриче­ская и магнитная постоянные,  и  - соответственно диэлектрическая и магнит­ная проницаемости,  - удельная прово­димость вещества.

Из уравнений Максвелла вытекает, что источниками электрического поля мо­гут быть либо электрические заряды, либо изменяющиеся во времени магнитные по­ля, а магнитные поля могут возбуждаться либо движущимися электрическими заря­дами (электрическими токами), либо пере­менными электрическими полями. Уравне­ния Максвелла не симметричны относи­тельно электрического и магнитного полей. Это связано с тем, что в природе су­ществуют электрические заряды, но нет зарядов магнитных.

Для стационарных полей (Е= const и В =const) уравнения Максвелла при­мут вид

т. е. источниками электрического поля в данном случае являются только электри­ческие заряды, источниками магнитно­го - только токи проводимости. В данном случае электрические и магнитные поля независимы друг от друга, что и позволяет изучать отдельно постоянные электриче­ское и магнитное поля.

Воспользовавшись известными из векторного анализа теоремами Стокса и Гаусса

можно представить полную систему урав­нений Максвелла в дифференциальной форме (характеризующих поле в каждой точке пространства):

Если заряды и токи распределены в пространстве непрерывно, то обе формы уравнений Максвелла - интегральная

и дифференциальная - эквивалентны. Однако когда имеются поверхности разры­ва - поверхности, на которых свойства среды или полей меняются скачкообразно, то интегральная форма уравнений являет­ся более общей.

Уравнения Максвелла в дифференци­альной форме предполагают, что все вели­чины в пространстве и времени изменяют­ся непрерывно. Чтобы достичь математи­ческой эквивалентности обеих форм урав­нений Максвелла, дифференциальную форму дополняют граничными условиями, которым должно удовлетворять электро­магнитное поле на границе раздела двух сред. Интегральная форма уравнений Максвелла содержит эти условия. Они были рассмотрены раньше (см. § 90, 134):

D 1 n = D 2 n , E 1 = E 2 , B 1 n = B 2 n , H 1  = H 2 

(первое и последнее уравнения отвечают случаям, когда на границе раздела нет ни свободных зарядов, ни токов прово­димости).

Уравнения Максвелла - наиболее об­щие уравнения для электрических и маг­нитных полей в покоящихся средах. Они играют в учении об электромагнетизме такую же роль, как законы Ньютона в ме­ханике. Из уравнений Максвелла следует, что переменное магнитное поле всегда свя­зано с порождаемым им электрическим полем, а переменное электрическое поле всегда связано с порождаемым им магнит­ным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом - они образуют единое электромагнитное поле.

Теория Максвелла, являясь обобщени­ем основных законов электрических и маг­нитных явлений, смогла объяснить не только уже известные экспериментальные факты, что также является важным ее следствием, но и предсказала новые явле­ния. Одним из важных выводов этой тео­рии явилось существование магнитного поля токов смещения (см. § 138), что по­зволило Максвеллу предсказать существо­вание электромагнитных волн - перемен­ного электромагнитного поля, распространяющегося в пространстве с конечной скоростью. В дальнейшем было доказано, что скорость распространения свободного электромагнитного поля (не связанного с зарядами и токами) в вакууме равна скорости света с = 3 10 8 м/с. Этот вывод и теоретическое исследование свойств электромагнитных волн привели Максвел­ла к созданию электромагнитной теории света, согласно которой свет представляет собой также электромагнитные волны. Электромагнитные волны на опыте были получены немецким физиком Г. Герцем (1857-1894), доказавшим, что законы их возбуждения и распространения полно­стью описываются уравнениями Максвел­ла. Таким образом, теория Максвелла была экспериментально подтверждена.

К электромагнитному полю применим только принцип относительности Эйнштей­на, так как факт распространения электро­магнитных волн в вакууме во всех системах отсчета с одинаковой скоростью с не совместим с принципом относительности Галилея.

Согласно принципу относительности Эйнштейна, механические, оптические и электромагнитные явления во всех инер­циальных системах отсчета протекают одинаково, т. е. описываются одинаковыми уравнениями. Уравнения Максвелла инва­риантны относительно преобразований Ло­ренца: их вид не меняется при переходе

от одной инерциальной системы отсчета к другой, хотя величины Е, В, D , Н в них преобразуются по определенным прави­лам.

Из принципа относительности вытека­ет, что отдельное рассмотрение электри­ческого и магнитного полей имеет относи­тельный смысл. Так, если электрическое поле создается системой неподвижных зарядов, то эти заряды, являясь непод­вижными относительно одной инерциаль­ной системы отсчета, движутся относи­тельно другой и, следовательно, будут порождать не только электрическое, но и магнитное поле. Аналогично, неподвиж­ный относительно одной инерциальной системы отсчета проводник с постоянным током, возбуждая в каждой точке про­странства постоянное магнитное поле, дви­жется относительно других инерциальных систем, и создаваемое им переменное маг­нитное поле возбуждает вихревое электри­ческое поле.

Таким образом, теория Максвелла, ее экспериментальное подтверждение, а так­же принцип относительности Эйнштейна приводят к единой теории электрических, магнитных и оптических явлений, базиру­ющейся на представлении об электромаг­нитном поле.

44. . Диа- и парамагнетизм

Всякое вещество является магнетиком, т. е. оно способно под действием магнитно­го поля приобретать магнитный момент (намагничиваться). Для понимания меха­низма этого явления необходимо рассмот­реть действие магнитного поля на движу­щиеся в атоме электроны.

Ради простоты предположим, что элек­трон в атоме движется по круговой орби­те. Если орбита электрона ориентирована относительно вектора В произвольным об­разом, составляя с ним угол а (рис. 188), то можно доказать, что она приходит в та­кое движение вокруг В, при котором век­тор магнитного момента р m , сохраняя по­стоянным угол а, вращается вокруг направления В с некоторой угловой скоро­стью. Такое движение в механике на­зывается прецессией. Прецессию вокруг вертикальной оси, проходящей через точку опоры, совершает, например, диск волчка при замедлении движения.

Таким образом, электронные орбиты атома под действием внешнего магнитного поля совершают прецессионное движе­ние, которое эквивалентно круговому то­ку. Так как этот микроток индуцирован внешним магнитным полем, то, согласно правилу Ленца, у атома появляется со­ставляющая магнитного поля, направлен­ная противоположно внешнему полю. На­веденные составляющие магнитных полей атомов (молекул) складываются и обра­зуют собственное магнитное поле вещест­ва, ослабляющее внешнее магнитное по­ле. Этот эффект получил название диа­магнитного эффекта, а вещества, на­магничивающиеся во внешнем магнитном поле против направления поля, называют­ся диамагнетиками.

В отсутствие внешнего магнитного по­ля диамагнетик немагнитен, поскольку в данном случае магнитные моменты элек­тронов взаимно компенсируются, и сум­марный магнитный момент атома (он ра­вен векторной сумме магнитных моментов (орбитальных и спиновых) составляющих атом электронов) равен нулю. К диамагнетикам относятся многие металлы (на­пример, Bi, Ag, Au, Cu), большинство органических соединений, смолы, углерод и т. д.

Так как диамагнитный эффект обус­ловлен действием внешнего магнитного поля на электроны атомов вещества, то диамагнетизм свойствен всем веществам. Однако наряду с диамагнитными ве­ществами существуют и парамагнитные - вещества, намагничивающиеся во внеш­нем магнитном поле по направлению поля.

У парамагнитных веществ при отсутст­вии внешнего магнитного поля магнитные моменты электронов не компенсируют друг друга, и атомы (молекулы) парамагнети­ков всегда обладают магнитным момен­том. Однако вследствие теплового движе­ния молекул их магнитные моменты ори­ентированы беспорядочно, поэтому парамагнитные вещества магнитными свой­ствами не обладают. При внесении пара­магнетика во внешнее магнитное поле устанавливается преимущественная ори­ентация магнитных моментов атомов по полю (полной ориентации препятствует тепловое движение атомов). Таким обра­зом, парамагнетик намагничивается, со­здавая собственное магнитное поле, со­впадающее по направлению с внешним полем и усиливающее его. Этот эффект называется парамагнитным. При ослабле­нии внешнего магнитного поля до нуля ориентация магнитных моментов вследст­вие теплового движения нарушается и па­рамагнетик размагничивается. К парамаг­нетикам относятся редкоземельные эле­менты, Pt, Al и т. д. Диамагнитный эффект наблюдается и в парамагнетиках, но он значительно слабее парамагнитного и по­этому остается незаметным.

Из рассмотрения явления парамагне­тизма следует, что его объяснение совпа­дает с объяснением ориентационной (дипольной) поляризации диэлектриков с по­лярными молекулами (см. §87), только электрический момент атомов в случае поляризации надо заменить магнитным моментом атомов в случае намагничения.

Подводя итог качественному рассмот­рению диа- и парамагнетизма, еще раз отметим, что атомы всех веществ являют­ся носителями диамагнитных свойств. Ес­ли магнитный момент атомов велик, то парамагнитные свойства преобладают над диамагнитными и вещество является па­рамагнетиком; если магнитный момент атомов мал, то преобладают диамагнит­ные свойства и вещество является диамагнетиком.

Ферромагнетики и их свойства

Помимо рассмотренных двух классов ве­ществ - диа- и парамагнетиков, называе­мых слабомагнитными веществами, су­ществуют еще сильномагнитные вещест­ва - ферромагнетики - вещества, обла­дающие спонтанной намагниченностью, т. е. они намагничены даже при отсутствии внешнего магнитного поля. К ферромагне­тикам кроме основного их представите­ля - железа (от него и идет название «ферромагнетизм») - относятся, напри­мер, кобальт, никель, гадолиний, их спла­вы и соединения.

Релятивистская форма закона Кулона: сила Лоренца и уравнения Максвелла. Электромагнитное поле.

Закон Кулона :

Сила Лоренца: СИЛА ЛОРЕНЦА - сила, действующая на заряженную частицу, движущуюся в электромагнитном поле. Если левую руку расположить так, чтобы составляющая магнитной индукции В, перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90 градусов большой палец покажет направление действующей на заряд силы Лоренца.

Уравнения Максвелла: - это система дифференциальных уравнений, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах.

Электромагнитное поле: - это фундаментальное физическое поле, взаимодействующее с электрически заряженными телами, представляющее собой совокупность электрического и магнитного полей, которые могут при определённых условиях порождать друг друга.

Стационарное магнитное поле. Индукция магнитного поля, принцип суперпозиции. Закон Био-Савара.

Постоянное (или стационарное) магнитное поле: - это магнитное поле, неизменяющееся во времени. М\Г - это особый вид материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.

Магнитная индукция : - векторная величина, являющаяся силовой характеристикой магнитного поля в данной точке пространства. Определяет, с какой силой магнитное поле действует на заряд , движущийся со скоростью .

Принцип суперпозиции: - В самой простой формулировке принцип суперпозиции гласит:

результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.
Закон Био-Савара: - это закон, определяющий напряженность магнитного поля, создаваемого электрическим током, в произвольной точке пространства вокруг проводника с током.


Сила Ампера. Взаимодействие параллельных проводников с током. Работа сил магнитного поля по перемещению витка с током.

Отсюда нетрудно получить выражение для индукции магнитного поля каждого из прямолинейных проводников. Магнитное поле прямолинейного проводника с током должно обладать осевой симметрией и, следовательно, замкнутые линии магнитной индукции могут быть только концентрическими окружностями, располагающимися в плоскостях, перпендикулярных проводнику. Это означает, что векторы B1 и B2 магнитной индукции параллельных токов I 1 и I 2 лежат в плоскости, перпендикулярной обоим токам. Поэтому при вычислении сил Ампера, действующих на проводники с током, в законе Ампера нужно положить sin α = 1. Из закона магнитного взаимодействия параллельных токов следует, что модуль индукции B магнитного поля прямолинейного проводника с током I на расстоянии R от него выражается соотношением

Для того, чтобы при магнитном взаимодействии параллельные токи притягивались, а антипараллельные отталкивались, линии магнитной индукции поля прямолинейного проводника должны быть направлены по часовой стрелке, если смотреть вдоль проводника по направлению тока. Для определения направления вектора B магнитного поля прямолинейного проводника также можно пользоваться правилом буравчика: направление вращения рукоятки буравчика совпадает с направлением вектора B если при вращении буравчик перемещается в направлении тока Магнитное взаимодействие параллельных проводников с током используется в Международной системе единиц (СИ) для определения единицы силы тока – ампера:

Вектор магнитной индукции - это основная силовая характеристика магнитного поля (обозначается В).

Сила Лоренца - сила, действующая на одну заряженную частицу, равна

F Л = q υ B sin α.

Под действием силы Лоренца электрические заряды в магнитном поле движутся по криволинейным траекториям. Рассмотрим наиболее характерные случаи движения заряженных частиц в однородном магнитном поле.
а) Если заряженная частица попадает в магнитное поле под углом α = 0°, т.е.летит вдоль линий индукций поля, то F л = qvBsma = 0. Такая частица будет продолжать свое движение так, как если бы магнитного поля не было. Траектория частицы будет представлять собой прямую линию.
б)Частица с зарядом q попадает в магнитное поле так, что направление ее скорости v перпендикулярно индукции ^ В магнитного поля (рисунок - 3.34). В таком случае сила Лоренца обеспечивает центростремительное ускорение a = v 2 /R и частица движется по окружности радиусом R в плоскости, перпендикулярной линиям индукции магнитного поля.под действием силы Лоренца: F n = qvB sinα, учитывая, что α = 90°, запишем уравнение движения такой частицы: т v 2 /R= qvB. Здесь m - масса частицы, R – радиус окружности по которой движется частица. Откуда можно найти отношение e/m - называют удельным зарядом, который показывает заряд единицы массы частицы.
с) Если заряженная частица влетает со скоростью v 0 в магнитное поле под любым углом α , то данное движение можно представить ее как сложное и разложить ее на две составляющие по. Траектория движения представляет собой винтовую линию, ось которой совпадает с направлением В . Направление, в котором закручивается траектория, зависит от знака заряда частицы. Если заряд положителен, траектория закручивается против часовой стрелки. Траектория, по которой движется отрицательно заряженная частица, закручивается по часовой стрелке (предполагается, что мы смотрим на траекторию вдоль направления В ; частица при этом летит от нас.

Одним из проявлений магнитного поля является его силовое воздей­ствие на проводник с током, помещенный в магнитное поле. Ампером было установлено, что на проводник с током, помещенный в однородное магнитное поле, индукция которого , действует сила, пропорциональная силе тока и индукции магнитного поля:

F = IBℓsinα (15.22)

[α - угол между направлением тока в проводнике и индукцией магнитного поля].

Эта формула оказывается справедливой для прямолинейного про­водника и однородного поля.

Если проводник имеет произвольную форму и поле неоднородно то выражение (3.125) принимает вид

dF = IBdℓsinα (15.23)

или в векторной форме

(15.24)

Произведение Idℓ называют элементом тока. Соотношения (15.23), (15.24) выражают за­кон Ампера.

Для определения направления силы, действующей на проводник с током, помещенный в магнитное поле, применяется правило левой руки : если левую руку расположить так, чтобы линии магнитной индук­ции входили в ладонь, а вытянутые четыре пальца совпадали с на­правлением тока в проводнике, то отогнутый большой палец укажет направление силы, действующей на проводник с током, помещен­ный в магнитное поле (рис. 15.10).

Эта сила всегда перпендикулярна плоскости, в которой лежат про­водник и вектор . Зная направление и модуль силы, действующей на любой участок dℓ проводника, можно вычислить силу, действующую на весь проводник. Для этого нужно найти сумму сил, действующих на все

участки проводника:

Используя закон Ампера, рассмотрим взаи­модействие параллельных проводников с током (рис. 15.11). Предположим, что в однородной изо­тропной среде, относительная магнитная прони­цаемость которой μ, на расстоянии d друг от дру­га расположены два проводника. Пусть по одному из них течет ток I 1 а по другому - I 2 водном направлении.

Выделим на проводнике 2 элемент dℓ 2 . На этот элемент будет действовать сила Ампера

dF i = В 1 I 2 ·dℓ i

[ - индукция магнитного поля, создаваемого первым проводником в месте нахождения второго проводника].

Вектор направлен перпендикулярно направлению току I, поэтому sinα=1. Учитывая это, находим

(15.25)

Применяя правило левой руки, определяем направление этой силы. Чтобы определить силу F 12 , т. е. силу, действующую со стороны провод­ника 1 на проводник 2, нужно просуммировать все элементарные силы dF i

Сила, с которой с которой взаимодействуют два проводника пропорцио­нальна произведению токов, текущих по проводникам, и обратно про­порциональна расстоянию между ними.

Если по проводникам текут токи в одинаковых направлениях, то проводники притягиваются, а в противоположных – отталкиваются.

Закон Ампера является основным в учении о магнетизме и играет такую же роль, как и закон Кулона в электростатике.

15.5 Контур с током в магнитном поле. Работа по перемещению проводника и контура с током в магнитном поле

Контур с током, имеющий стороны а и ℓ, помещен в магнитное поле

(рис. 15.12). На каждую сторону кон­тура действует сила Ампера. На гори­зонтальные стороны ℓ контура дейст­вуют силы, которые растягивают или сжимают) контур, не поворачивая его.

На каждую из вертикальных сторон а действует сила F = IВа. Эти силы соз­дают пару сил, момент которой

М = Fℓcosφ (15. 27)

[φ- угол между вектором и сторо­ной контура ℓ.

Момент сил стремится повернуть контур так, чтобы поток Ф, прони­зывающий контур, был максимальным. Подставляя в формулу (15.27) выражение для силы, имеем

М = IBaℓcosφ= ISBcosφ= p m Bcos(π/2-α)= = p m B sinα (15.28)

Величину IS называют магнитным моментом контура p m .. Вектор p m совпадает с направлением положительной нормали к плоскости контура.

Механический момент М, действующий на контур с током в одно­родном магнитном поле, пропорционален магнитному моменту р m кон­тура, индукции В магнитного поля и синусу угла между направлением векторов p m (нормалью к контуру) и .

В векторной форме соотношение (15.28) имеет вид

М = (15.29)

Рассмотрим проводник длиной ℓ с током I, помещённый в однородное внешнее магнитное поле, перпендикулярное плоскости контура и который может свободно перемещаться в этом поле под действием силы Ампера (рис. 15.13).

Под действием этой силы проводник переместится параллельно самому себе на отрезок из положения 1 в положение 2. работа, совершаемая магнитным полем, равна

dA=Fdx=IBℓdx=IBdS=IdФ, (15.30)

так как ℓdx = dS – площадь пересекаемая проводником при его перемещении в магнитном поле, ВdS = dФ – поток вектора магнитной индукции, пронизывающий эту площадь. Таким образом,

dA= IdФ, (15.31)

т.е. работа по перемещению проводника с током в магнитном поле равна произведению силы тока на магнитный поток, пересечённый движущимся проводником.

Работа по перемещения проводника с током I из точки 1 в точку 2 определяется по формуле:

(15.32)

Работа по перемещению замкнутого контура с током в магнитном поле также определяется по формуле. Формула остаётся справедливой для контура любой формы в произвольном магнитном поле.

§ 15.5. Сила Лоренца. Движение частицы в магнитном поле. Эффект Холла

Движущиеся электрические заряды создают вокруг себя магнитное поле, которое распространяется в вакууме со скоростью света. При дви­жении заряда во внешнем магнитном поле возникает силовое взаимодей­ствие магнитных полей, определяемое по закону Ампера. Процесс взаи­модействия магнитных полей исследовался Лоренцем, который вывел формулу для расчета силы, действующей со стороны магнитного поля на движущуюся заряженную частицу. Лоренц является создателем класси­ческой электронной теории. Широко известны его работы в области электродинамики, термодинамики, статической механики, оптики, теории излучения, атомной физики. За исследования влияния магнетизма на процессы излучения в 1902 г. был удостоен Нобелевской премии.

Сила, действующая со стороны магнитного поля на движущийся за­ряд называется силой Лоренца и , равна

F л = qυВsinα (15.33)

где q – заряд частица; - скорость частицы; В – индукция магнитного поля, α- угол между направлением скорости частицы и вектором магнитной индукции.

Эта сила перпендикулярна векторам и .

Направление силы Ло­ренца, определяется по правилу левой руки : если расположить левую ладонь так, чтобы четыре вытянутых пальца указывали направление движения положительного заряда, а вектор магнитного поля входил в ладонь, то отставленный большой палец покажет направление силы Лоренца, действующей на данный заряд.

С изменением знака заряда направление силы изменяется на противоположное.

Анализируя выражение (3.146), можно сделать выводы:

1. Если скорость заряда =0; F л =0. Магнитное поле не действу­ет на неподвижную частицу.

2. Если частица влетает в магнитное поле параллельно его силовым линиям . α=0°, sin0°=0; F л =0. Магнитное поле не действу­ет на неподвижную заряженную частицу; Частица будет продолжать двигаться равномерно и прямолинейно с той же скоростью, которая у неё была.

3. Если частица влетает перпендикулярно силовым линиям магнитного поля ┴ . α=90°, sin90°=1; F л =qυВ. Сила Ло­ренца искривляет траекторию движения, выполняя роль центростреми­тельной силы.

Очень важным является использование этого явления при исследо­вании космических частиц для определения знака заряда. Попадание ле­тящей частицы в магнитное поле вызывает изменение ее траектории в зависимости от знака заряда (рис. 3.59). На рис. 3.59 вектор индукции магнитного поля направлен перпендикулярно плоскости чертежа (от нас). Частица будет двигаться по окружности, радиус R которой можно опре­делить из равенства центростремительной силы и силы Лоренца:

Чем больше скорость частицы, тем больше радиус окружности, по которой она движется, период же обращения ни от скорости, ни от радиуса окружности не зависит.

(15.36)

4. Если частица движется под углом β к линиям , то траектория дви­жения частицы будет винтовой линией (спиралью), охватывающей силовые линии магнитного поля (рис. 3.60).

Шаг h спирали определяется υ т -тангенциальной составляющей скорости υ частицы. Радиус спирали зависит от υ n -нормальной состав­ляющей скорости υ.

В 1892 г. Лоренц получает формулу силы, с которой электромагнитное поле действует на любую находящуюся в нём заряженную частицу:

(15.37)

Эта сила называется электромагнитной силой Лоренца , а данное выражение является одним из основных законов классической электродинамики.

Когда электрический заряд движется одновременно в электрическом и магнитном полях, то результирующая сила, действующая на частицу, равна

F = qυВsinα+ qE (15.38)

В этом случае сила имеет две составляющие: от воздействия магнит­ного и электрического полей. Между этими составляющими имеется принципиальная разница. Электрическое поле изменяет величину скоро­сти, а следовательно, и кинетическую энергию частицы, однородное маг­нитное поле изменяет только направление ее движения.

Эффект Холла

Американский ученый Э. Холл обнаружил, что в проводнике, поме­щенном в магнитное поле, возникает разность потенциалов (поперечная) в направлении, перпендикулярном вектору магнитной индукции В и току I, вследствие действия силы Лоренца на заряды, движущиеся в этом про­воднике (рис. 3.62).

Опыт показывает, что поперечная разность потенциалов пропорцио­нальна плотности тока j, магнитной индукции и расстоянию d между электродами:

Допустим, что электроны движутся с упорядоченной средней скоро­стью υ и на каждый электрон действует сила Лоренца, равная еВυ. Под ее действием электроны смещаются так, что одна из граней образца заря­дится отрицательно, другая - положительно и внутри образца возникнет электрическое поле, т. е. е υ В = еЕ.

Следовательно, поперечная разность потенциалов равна

Среднюю скорость υ электронов можно выразить через плотность тока j, так как j=neυ , поэтому

Приравнивая это выражение формуле (15.39), получаем .

Постоян­ная Холла зависит от концентрации электронов.

По измеренному значению постоянной Холла можно: 1) определить концентрацию носителей тока в проводнике (при известных характере проводимости и заряде носителей); 2) судить о природе проводимости полупроводников, так как знак постоянной Холла совпадает со знаком заряда носителей тока. Применяется для умножения постоянных токов в аналоговых вычислительных машинах, в измерительной технике (датчик Холла

Примеры решения задач

Пример. Прямоугольная рамка со сторонами а= 5см и b=10см, состоящая из N=20 витков, помещена во внешнее однородное магнитное поле с индукцией В=0,2 Тл. Нормаль к рамке составляет с направлением магнитного поля угол . Определите вращающий момент сил, действующий на рамку, если по ней течёт ток I=2А.

Дано : а= 5см=0,05м; b=10см=0,1м; N=20; В=0,2 Тл; . ; I=2А.

Найти : М.

Решение. Механический момент, действующий на рамку с током, помещённую в однородное магнитное поле,

,

- магнитный момент рамки с током. Модуль M=p m Bsinα.

Поскольку рамка состоит N из витков, то M=Np m Bsinα (1)

где магнитный момент рамки с током

p m =IS=Ia b. (2)

Подставив формулу (2) в выражение (1), найдём искомый вращающий момент

M=NIBa bsinα.

Ответ: М=0,02 Н∙м

Пример. По тонкому проволочному кольцу течёт ток. Определите, во сколько раз изменится индукция в центре контура, если проводнику придать форму квадрата, не изменяя силы тока в проводнике.

Решение. Вектор в центре кругового тока направлен при выбранном направлении тока (см.рисунок), согласно правилу правого винта, перпендикулярно чертежу к нам (на рисунке это обозначено точкой в кружочке). Его модуль

где I– сила тока; R- радиус кольца; μ 0 - магнитная постоянная; μ - магнитная проницаемость среды.

Сторона квадрата, вписанная в кольцо, равна (длина окружности кольца 2πR). Вектор в центре квадрата направлен также перпендикулярно чертежу к нам. Магнитная индукция в центре квадрата равна сумме магнитных индукций, создаваемых каждой стороной квадрата. Тогда модуль , согласно закону Био-Савара-Лапласа,

Из формул (1) и (2) получим отношение

Ответ :

Пример. По двум бесконечно длинным прямым параллельным проводникам, находящимся в вакууме на расстоянии R=30см, текут одинаковые токи одного направления. Определите магнитную индукцию В поля, создаваемого токами в точке А, лежащей на прямой, соединяющей проводники и лежащей на расстоянии r=20см правее правого провода (см.рисунок). Сила тока в проводниках равна 20А.

Дано :μ=1; R=30см=0,3м; r=20см=0,2м; I 1 = I 2 =I=20 А.

Найти : B.

Решение. Пусть токи направлены перпендикулярно плоскости чертежа от нам, что обозначено на рисунке крестиками. Линии магнитной индукции замкнуты и охватывают проводники с токами. Их направление задаётся правилом правого винта. Вектор в каждой точке направлен по касательной к линии магнитной индукции (см. рисунок).

Согласно принципу суперпозиции, магнитная индукция результирующего поля в точке А

где и - магнитная индукция полей в этой точке, создаваемые первым и вторым проводниками. Векторы и и сонаправлены, поэтому сложение векторов можно заменить сложением их модулей

В=В 1 +В 2 . (1)

Магнитная индукция полей, создаваемых бесконечно длинными прямыми проводниками с током I 1 и I 2 ,

, (2)

где μ 0 – магнитная постоянная; μ- магнитная проницаемость среды.

Подставив выражение (2) в формулу (1) и учитывая, что I 1 =I 2 =I и μ=1 (для вакуума), получим искомое выражение для магнитной индукции в точке А:

Ответ: В=28 мкТл.

Пример. По двум бесконечно длинным прямым параллельным проводникам находящимся в вакууме, расстояние между которыми d=15см, текут токи I 1 =70A и I 2 =50A в одном направлении. Определите магнитную индукцию В поля, в точке А, лежащей удалённой на r 1 =10см от первого и r 1 =20см от второго проводников.

Дано :μ=1; d=15см=0,15 м; I 1 =70A; I 2 =50A; r 1 =10см=0,1м; r 2 =20см=0,2м.

Найти : B.

Решение. Пусть токи направлены перпендикулярно плоскости чертежа к нам. Векторы магнитной индукции направлены по касательной к линиям магнитной индукции.

Согласно принципу суперпозиции, магнитная индукция в точке А (см.рисунок)

где и - соответственно магнитные индукции полей, создаваемые проводниками с током I 1 и I 2 (направления векторов и и токов I 1 и I 2 показаны на рисунке). Модуль вектора по теореме косинусов,

.

Подставив эти выражения в формулу (1), найдём искомое В:

.

Ответ: В=178 мкТл.

Пример. В одной плоскости с бесконечно прямым проводником с током

I=10 A расположена прямоугольная проволочная рамка (сторона а=25см, b=10см), по которой протекает ток I 1 =2А. Длинные стороны рамки параллельны прямому току, причём ближайшая из них находится от прямого тока на расстоянии с=10см и ток в ней сонаправлен току I. Определите силы, действующие на каждую из сторон рамки.

Дано :I=10A; а=25см=0.25м; b=10 см=0.10 м;; I 1 =2 A; с=10см=0,1м.

Найти : F 1 ; F 2 ; F 3 ; F 4 ;

Решение. Прямоугольная рамка находится в неоднородном поле прямого тока с индукцией

(рассматриваем случай вакуумa), где r – расстояние от прямого тока до рассматриваемой точки.

Сила, с которой действует поле прямого тока, может быть найдена суммированием элементарных сил, определяемых законом Ампера,

Вектор в пределах рамки направлен перпендикулярно её плоскости за чертёж, и в пределах каждой стороны угол . Это означает, что в пределах одной стороны элементарные силы параллельны друг другу и сложение векторов

Можно заменить сложением их модулей:

(2)

где интегрирование ведётся по соответствующей стороне рамки

Короткие стороны рамки расположены одинаково относительно провода, а потому действующие на них силы численно равны, но направлены противоположно. Их направление, впрочем как и направление других сил (см.рисунок), определяется по правилу левой руки. Вдоль каждой из коротких сторон прямоугольника магнитная индукция изменяется [см. формулу (1)]. Тогда, произведя интегрирование [с учётом (2)],

.

Длинные стороны рамки параллельны прямому току, находясь от него соответственно на расстояниях с и с+b. Тогда

;

,

где и .

Ответ: F 1 =10 мкН; F 2 =2,77 мкН; F 3 =5 мкН; F 4 =2,77 мкН.

Пример. Электрон, прошедший ускоряющую разность потенциалов U=1 кВ, влетает в однородное магнитное поле с индукцией В=3мТл перпендикулярно линиям магнитной индукции. Определите: 1) силу, действующую на электрон; 2) радиус окружности, по которой электрон движется; 3) период обращения электрона.

Дано : m=9,11∙10 -31 кг; е=1,6∙10 -19 Кл; U=1кВ=1∙10 3 В; В=3мТл=3∙10 -3 Тл; α=90º.

Найти : 1)F; 2) R; 3) T.

Решение. При движении электрона в магнитном поле со скоростью υ на него действует сила Лоренца

F л =eυBsinα,

где α – угол между векторами и (в нашем случае α=90º). Тогда

При прохождении ускоряющей разности потенциалов работа сил электростатического поля идёт на сообщение электрону кинетической энергии ,

Подставив выражение (2) в формулу (1), найдём искомую силу, действующую на электрон,

Из механики известно, что постоянная сила, перпендикулярна скорости, а ею и является сила Лоренца (1), вызывает движение по окружности. Она сообщает электрону нормальное ускорение , где R – радиус окружности. По второму закону Ньютона F=ma, где F=eυB. Тогда

откуда искомый радиус окружности с учётом (2)

Период обращения электрона

Подставив выражение (3) и (2) в формулу (4), найдём искомый период обращения электрона

Ответ: 1)F=9∙10 -15 Н; 2) R=3,56 см; 3) T=11,9 нс.

Пример. Протон, обладая скоростью υ=10 4 м/с, влетает в однородное магнитное поле с индукцией В=10мТл под углом α=60º к направлению линий магнитной индукции. Определите радиус R и шаг h винтовой линии, по которой будет двигаться протон..

Дано : υ=10 4 м/с; е=1,6∙10 -19 Кл; m=1,67∙10 -27 кг; В=10мТл=10∙10 -3 Тл; α=60º.

Найти :R; h.

Решение. Движение протона в однородном магнитном поле со скоростью , направленной под углом α к вектору , происходит по винтовой линии (см. рисунок). Для доказательства этого разложим вектор скорости на составляющие, параллельную (υ х =υcosα) и перпендикулярную (υ у =υsinα) вектору индукции.

Движение в направлении поля происходит с равномерной скоростью υ х, а в направлении, перпендикулярном вектору , под действием силы Лоренца – по окружности ( =const, υ х =const). В результате сложения двух движений траектория результирующего движения протона – винтовая линия (спираль).

Сила Лоренца сообщает протону нормальное ускорение (R- радиус окружности). По второму закону Ньютона, F=ma n , где F л =eυ y B– сила Лоренца. Тогда

Откуда искомый радиус винтовой линии, по которой будет двигаться протон,

Шаг винтовой линии равен расстоянию, пройденному протоном вдоль оси ох за время одного полного оборота, т.е.

h=υ x T= υTcosα, (1)

где период вращения

(2)

Подставив формулу (2) в выражение (1), найдём искомый шаг винтовой линии

Ответ: R=9.04мм; h=3,28 см.

Пример. Между пластинами плоского конденсатора, находящегося в вакууме, создано однородное магнитное поле напряжённостью Н=2кА/м. Электрон движется в конденсаторе параллельно пластинам конденсатора и перпендикулярно направлению магнитного поля со скоростью υ=2 Мм/с. Определите напряжение U, приложенное к конденсатору, если расстояние d между его пластинами составляет 1,99 см..

Дано : μ=1; Н=2кА/м=2∙10 3 А/м; υ=2Мм/с=2∙10 6 м/с; d=1,99 см=1.99∙10 -2 м).

Найти :U.

Решение. Предположим, что магнитное поле направлено перпендикулярно чертежу от нас. Что указано на рисунке крестиками. Электрон может двигаться перпендикулярно направлению магнитного поля и параллельно пластинам конденсатора (при выбранных направлении магнитного поля и зарядах на пластинах) только так, как указано на рисунке. При этом кулоновская сила (У- напряжённость электрического поля) уравновешивается силой Лоренца F л =eυB (её направление определяется по правилу левой руки). Тогда

Формула, выражающая связь между магнитной индукцией и напряжённость магнитного поля

Для случая вакуума (μ=1) имеет вид В=μ 0 Н, Подставив эту формулу в выражение (1), найдём искомое напряжение на пластинах конденсатора

Ответ: U=100 B.

Пример. Через сечение медной пластинки (плотность меди ρ=8,93 г/см 3) толщиной d=0,1 мм пропускается ток I =5 А. Пластинка с током помещается в однородное магнитное поле с индукцией В=0,5 Тл, перпендикулярное направлению тока и ребру пластинки. Определите возникающую в пластинке поперечную (холловскую) разность потенциалов, если концентрация n свободных электронов равна концентрации n" атомов проводника.

Дано : ρ=8,93 г/см 3 =8,93∙10 3 кг/м 3 ; d=0,1мм=1∙10 -4 м; I=5A; В=0,5 Тл; n = n" ; М=63,5∙10 -3 кг/моль.

Найти :Δφ..

Решение. На рисунке показана металлическая пластинка с током плотностью в магнитном поле , перпендикулярном (как в условии задачи). При данном направлении скорость носителей тока в металлах – электронов – направлена справа налево. Электроны испытывают действие силы Лоренца, которая в данном случае направлена вверх. У верхнего края пластинки возникает повышенная концентрация электронов (он зарядится отрицательно), а у нижнего – их недостаток (зарядится положительно). Поэтому между краями пластинки возникает дополнительное поперечное электрическое поле, направленное снизу вверх.

В случае стационарного распределения зарядов в поперечном направлении (напряженность Е В поперечного поля достигнет такой величины, что его действие на заряды уравновесит силу Лоренца)

или Δφ=υВα (1)

где а – ширина пластинки; Δφ - поперечная (холловская) разность потенциалов.

Сила тока

I=jS=neυS=neυa d, (2)

где S –площадь поперечного сечения пластинки толщиной d; n- концентрация электронов; υ - средняя скорость упорядоченного движения электронов.

Подставив (2) в (1), получим

Согласно условию задачи, концентрация свободных электронов равна концентрации атомов проводника. Следовательно,

, (4)

где N A =6,02∙10 23 моль -1 – постоянная Авогадро; V m - молярный объём меди; М – молярная масса меди; ρ- её плотность.

Подставив формулу (4) в выражение (3), найдём искомую

Пример. Магнитная индукция В на оси тороида без сердечника (внешний диаметр тороида d 1 =60 см, внутренний – d 2 =40см), содержащего N=200 витков, составляет 0,16 мТл. Пользуясь теоремой о циркуляции вектора , определите силу тока в обмотке тороида..

Дано : d 1 =60 см =0,6 м; d 2 =40 см =0,4 м; N=200; B=0,16 мТл=0,16∙10 -3 Тл.

Найти : I.

Решение. Циркуляция вектора

, (1)

т.е. равна алгебраической сумме токов, охватываемых контуром, вдоль которого вычисляется циркуляция, умноженной на магнитную постоянную. В качестве контура выберем окружность, расположенную так же, как и линия магнитной индукции, т.е. окружность некоторым радиусом r, центр которой лежит на оси

тороида. Из условия симметрии следует, что модуль вектора во всех точках линии магнитной индукции одинаков, а поэтому выражение (1) можно записать в виде

(2)

(учли, что сила тока во всех витках одинакова, а контур охватывает число токов, равное числу витков тороида). Для средней линии тороида). Для средней линии тороида . Подставив r в (2), получим искомую силу тока:

.

Ответ : I=1 A

Пример. В одной плоскости с бесконечным прямолинейным проводом, по которому течёт ток I=10А, расположена квадратная рамка со стороной а=15 см. Определите магнитный поток Ф, пронизывающий рамку, если две стороны рамки параллельны проводу, а расстояние d от провода до ближайшей стороны рамки составляет 2 см.

Дано : I=10А ; а=15 см =0,15 м; d=2 см=0,02м.

Найти : Ф.

Решение. Магнитный поток Ф сквозь поверхность площадью вычисляется по формуле:

Квадратная рамка находится в неоднородном поле прямого тока с индукцией

(рассматриваем случай вакуума), где х – расстояние от провода до рассматриваемой точки.

Магнитное поле создаётся прямым током (направление показано на рисунке), и вектор перпендикулярен плоскости рамки (направлен перпендикулярно чертежу от нас, что на рисунке изображено крестиками), поэтому для всех точек рамки В n =В.

Площадь рамки разобьём на узкие элементарные площадки шириной dx и площадью a dx (см. рисунок), в пределах которых магнитную индукцию можно считать постоянной. Тогда поток сквозь элементарную площадку

. (1)

Проинтегрировав выражение (1) в пределах от до, найдём искомый магнитный поток

.

Ответ : Ф=0,25 мкВб

Пример. Круговой проводящий контур радиусом r=6см и током I=2А установился в магнитном поле так, что плоскость контура перпендикулярна направлению однородного магнитного поля с индукцией В=10мТл. Определите работу, которую следует совершить, чтобы медленно повернуть контур на угол относительно ос, совпадающий с диаметром контура..

Дано : r=6 см =0,06 м; I=2 А ; B=10 мТл=10∙10 -3 Тл; .

Найти : А вн.

Решение. Работа сил поля по перемещению замкнутого проводника с током I

A=I(Ф 2 -Ф 1), (1)

где Ф 1 и Ф 2 - потоки магнитной индукции, пронизывающие контуры в начальном и конечном положениях. Ток в контуре считаем постоянным, так как при медленном повороте контура в магнитном поле индукционными токами можно пренебречь.

Поток магнитной индукции сквозь плоский контур площадью S в однородном магнитном поле с индукцией В

где α– угол между вектором нормали к поверхности контура и вектором магнитной индукции .

В начальном положении, рис. a , контура (контур установился свободно) поток магнитной индукции максимален (α=0; cosα=1) и Ф 1 =BS (S- площадь контура), а в конечном положении, рис. б ( ; cosα=0), Ф 2 =0.

Тогда, подставив эти выражения в формулу (1), найдём, что

(учли, что площадь кругового контура S=πr 2).

Работа внешних сил направлена против сил поля (равна ей по модулю, но противоположна по знаку), поэтому искомая работа

A вн =πIBr 2 .

Ответ: А вн =226 мкДж.