БухУчет        27.02.2024   

Научные открытия, изобретения XVIII века по Лиону Фейхтвангеру. Научно-технические открытия и изобретения XVIII-XIX вв Научные изобретения 18 19 века

ученика 7-А класса

средней школы №8 имени А.Г. Ломакина

Бутенкова Михаила

“Развитие науки и техники в Россиии в первой половине XVIII века”

Таганрог 2001

Начало XVIII века в России связано с правлением императора Петра I. В те годы с особой остротой встала проблема подготовки специалистов различного профиля: кораблестроителей, моряков, инженеров, картографов, архитекторов и многих других. Для этого необходимо было развитие науки и образовательных учреждений.

Преобразования Петра в России дали прочную базу как для развития ряда технических школ, так и для основанной в 1724 г. в Петербурге Академии наук. Развитие промышленности требовало географических и геологических изысканий. Именно в начале XVIII века были обнаружены запасы каменного угля Донецкого и Кузнецкого бассейнов, нефть в Поволжье.

Географические исследования проводились на Юге России, в бассейнах Каспийского и Аральского морей, в Сибири и на Дальнем Востоке (район Курильских островов). Тогда же состоялась экспедиция Витуса Беринга, обнаружившая и исследовавшая пролив между Азией и Америкой.

В области новых разделов науки большое внимание ученые России уделяли изучению электрических и магнитных явлений. Так, в 1804 г. русский физик В.В. Петров издал в Петербурге фундаментальный труд по электризации и электрическим машинам, который считался одним из крупнейших исследований начала XVIII века. В дальнейшем опыты и теория электрических явлений разрабатывались академиками М.В. Ломоносовым и Г.В. Рихманом, который погиб в результате опытов с атмосферным электричеством.

В то же время в Москве была основана обсерватория, где занимались как изготовлением оптических приборов, так и расчеты астрономических явлений и популяризация астрономических знаний, например, в связи с предсказанием предстоящих солнечных затмений. В средние века заметные астрономические явления, такие как появление комет и затмения солнца служили основой для различных предрассудков. Кроме того, астрономические наблюдения необходимы для навигации и определения времени, особенно в дальних плаваниях в открытом море.

Для сбора и изучения редких явлений природы в начале XVIII века в Петербурге был основан первый естественнонаучный музей в России – Кунсткамера Петра I. Кроме того, примерно в то же время на окраине Петербурга был основан Ботанический сад, где работали ученые, изучающие различные виды растений.

В связи с географическими открытиями издаются книги по астрономии и географии и поучает развитие необходимое для науки и техники книгопечатное дело. В Москве и Петербурге открываются типографии, работающие с новым, упрощенным (гражданским) шрифтом вместо применявшегося в церковной литературе старославянского шрифта. Для развития математики важную роль играло то, что старинные обозначения для цифр были заменены на арабские цифры, используемые до сих пор. Общие очертания букв новых шрифтов были выбраны лично Петром I и похожи на те, которыми напечатан этот текст.

В 1702 году в России впервые стала выходить печатная газета “Ведомости”. Первоначально газета продавалась в Москве, в дальнейшем ее стали печатать и в Петербурге.

Для таких дел, как постройка зданий и крепостей а также кораблей, составления карт и т.п. требовалась система подготовки людей, которых сейчас называют инженерами и техниками, имеющими практическое образование. Для их подготовки была основана Московская Навигацкая школа, расположенная в так называемой Сухаревой Башне, где кроме учебных помещений располагалась также первая в России обсерватория. Выпускники этой школы сейчас назывались бы профессорами и их направляли в другие училища для обучения будущих мастеров промышленных и морских дел. В дальнейшем Школу перевели в Петербург, где она стала основой Морской Академии России, в которой учились многие знаменитые флотоводцы. Подобные же “Навигацкие” школы были открыты в портовых городах России – Ревель (Таллинн), Астрахань, а также в Нарве и Новгороде.

В 1707 году в Москве основывается первая в Росии Медицинская школа, затем вторая школа была основана в Петербурге.

В связи с широкими географическими изысканиями в Москве также были открыты школы (сейчас сказали бы – высшие школы) изучения ряда иностранных языков, особенно языков восточных соседей России, что было необходимо для подготовки дипломатов и путешественников в эти государства.

Во время царствования Петра I кроме перечисленных высших учебных и научных заведений, были основаны более 40 общеобразовательных и технических школ в различных городах России. В них учили грамоте и счету, а также основам военного и морского дела (в специальных гарнизонных школах).

Кроме учеников российских высших и технических школ в начале XVIII века широко было принято отправлять детей дворян и государственных деятелей для обучения в европейские университеты и школы (морские, артиллерийские, архитектурные и так далее).

Начало XVIII века в Европе и в России было временем наибольшего развития гидроэнергетики. Основным источником энергии для развивающейся промышленности уже не могла служить сила человека или животных, а также изменяющийся ветер. В это время были разработаны конструкции эффективно работающих водяных колес, в том числе верхненаливных, имеющих высокий коэффициент полезного действия, а также реверсивных, т.е. позволяющих изменять направление вращения. Если вначале энергия воды использовалась только в тех местах, где природные условия дают крутое падение горизонта, то во время расцвета гидроэнергетики научились строить гидротехнические сооружения (плотины, каналы и т.д.), позволяющие строить водяные колеса в любой местности, в том числе и на равнинах.

На основе источников энергии, связанных с водяными колесами, возникли крупные мануфактуры с широким применением передаточных механизмов для привода технических устройств – молотов в металлургии, станков в металлургии и производстве тканей и т.д., а также так называемых “пильных мельниц” для разделки и обработки леса. Особенно развилась подобная техника на Урале, где были открыты большие запасы полезных ископаемых и особенно железа. Для его обработки (ковки, точения, сверления) требовалось большое количество энергии. Под руководством энергичных купцов Демидовых на Урале, где гористая местность позволяла особенно легко строить гидроэнергетические установки, были построены крупные металлургические и другие фабрики с большим количеством станков, приводимых в движение с помощью ременных приводов от больших водяных колес. Там же проводились первые опыты по разработке паровых силовых установок, которые к концу XVIII века в основном вытеснили водяные колеса.

В области транспортной техники широкое развитие получили системы перевозки грузов по воде, как с помощью грузовых судов, так и с помощью буксируемых барж большой грузоподъемности, для которых прокладывались каналы и создавались шлюзы, особенно в северной части России, богатой водой. Многие проекты подобных сооружений были созданы под руководством Петра I, в том числе и проект канала между Волгой и Доном, впоследствии построенного уже в XX веке.

Значительных успехов в первой половине XVIII века достигло искусство фортификации, связанное с постройкой крепостей и необходимых для них сооружений, таких как башни, мосты, дороги, источники водоснабжения и т.д. Эти сооружения были необходимы в связи с политикой Петра, расширяющего границы Российской империи и основывавшего на освоенных землях гарнизоны и крепости, например в районе мыса Таганрога, а впоследствии при строительстве Петербурга и окружающих его военных пунктов.

В эпоху Петра значительное развитие получили также виды науки и техники, связанные с военными сферами. Это теория стрельбы из орудий, разработка новых конструкций огнестрельного оружия, минное и саперное дело и т.д.

В частности, сам Петр I обучался этим прикладным дисциплинам в Австрии и получил артиллерийский диплом с отличием. Он же во время визита в Англию лично интересовался работой Академии наук, Монетного двора, королевских верфей и т.д., по поводу работы которых состоял в переписке с Исааком Ньютоном, который в этот период заведовал Монетным двором в Лондоне и разрабатывал новые проекты быстроходных судов для верфей Англии.

Примерно в это же время британская Академия наук приняла в свои ряды одного из сподвижников Петра – А.Д. Меньшикова, при этом академиков не остановило то, что новый академик так и не научился писать и читать.

Самые известные изобретения 18 века

XVIII век подарил человечеству множество замечательных изобретений, среди которых фортепиано, поршневой паровой двигатель и спиртовой термометр. Многие из изделий, созданных тогда, используются и теперь.

Самые популярные изобретения XVIII века

До сих пор при настройке многих музыкальных инструментов используется камертон. Это изделие было изобретено как раз в XVIII веке.

Его создателем стал Джон Шор, придворный трубач королевы Великобритании. Это изобретение широко использовалось не только музыкантами, но и певцами. Изобретенный Шором камертон позволял добиться 420 колебаний в минуту, а издаваемый им звук приравняли к ноте ля.Газированная вода, которую так любят сотни тысяч людей по всему миру, была изобретена именно в XVIII веке. Прежде популярностью пользовалась вода из особых минеральных источников, однако ее транспортировка и хранение дорого обходились, поэтому ученые трудились над разработкой способа искусственно газировать воду прямо на заводах. Результата сумел добиться Джозеф Пристли, химик из Англии. Первое производство газированной воды в промышленных масштабах начал Якоб Швепп.Первая боевая подводная лодка, получившая название «черепаха» также появилась в XVIII веке. Ее изобретателем стал Дэвид Бушнелл, один из преподавателей Йельского университета. Несколько попыток применить «черепаху» для атаки на корабли противника с треском провалились, но зато в дальнейшем разработчики значительно усовершенствовали это изобретение.

Другие интересные изобретения XVIII века

Навигационный инструмент, вытеснивший в XVIII веке астролябию – секстант – был изобретен сразу двумя людьми, работавшими независимо друг от друга. Речь идет о Джоне Хэдли, математике из Англии, и Томасе Гэдфри, американском изобретателе. Секстант значительно упростил процесс определения координат во время путешествий.Еще одно замечательное изобретение XVIII века было сделано Питером ван Мушенбруком и Конеусом, его учеником. Речь идет о лейденской банке – электрическом конденсаторе. Это изобретение значительно упростило процесс изучения электричества и уровня проводимости разных материалов. Кроме того, благодаря нему была получена первая искусственная электрическая искра. Теперь лейденские банки применяют редко, и то преимущественно для демонстраций, но не стоит забывать, что это изобретение позволило ученым сделать множество очень полезных открытий.XVIII век был хорошим временем для полетов. В эту эпоху братья Монгольфье создали первый воздушный шар, наполненный горячим воздухом, а Жак Шарль – аналогичный аппарат, но уже заполненный водородом. Кроме того, именно в этом столетии появился первый парашют. Его изобретателем стал Луи-Себастьян Ленорман.

В 18 веке (1700-е годы) произошла первая промышленная революция. Началось производство паровых двигателей, которые заменили работу животных. 18 столетие ознаменовалось изобретениями и машинным оборудованием, которые заменили ручной труд.

18 век также стал частью Эпохи просвещения, исторического периода, который охарактеризован переходом от традиционных религиозных источников власти к науке и рациональному мышлению.

В результате Эпоха просвещения в 18 веке привела к Американской войне за независимость и Французской революции. В этот период развивался капитализм и распространялось все больше печатных материалов.

Список изобретений и открытий сделанных в 18 веке

1701 – Джетро Тулл изобретает сеялку.

1709 — Бартоломео Кристофори изобретает пианино.

1711 – Англичанин Джон Шор создает камертон.

1712 — Томас Ньюкомен патентует атмосферный паровой двигатель.

1717 — Эдмонд Галлей изобретает водолазный колокол.

1722 — Француз С. Хопфер патентует огнетушитель.

1724 — Габриэль Фаренгейт изобретает первый ртутный термометр.

1733 — Джон Кей изобретает летающий челнок.

1745 — Е.Г. фон Клейст создает лейденскую банку, первый электрический конденсатор.

1752 — Бенджамин Франклин изобретает громоотвод.

15 апреля 1755 — Сэмюэл Джонсон публикует первый словарь английского языка после девяти лет его составления. В предисловии Сэмюэл Джонсон написал: « Я не настолько запутался в лексикографии, чтобы забыть, что слова – это дочери земли, а вещи — сыновья неба».

1757 — Джон Кэмпбелл изобретает секстант.

1758 — Долланд изобретает хроматические линзы.

1761 – англичанин Джон Харрисон создает навигационные часы или морской хронометр для измерения долготы.

1764 — Джеймс Харгривз изобретает прядильную машину.

1767 — Джозеф Пристли изобретает газированную воду – содовую.

1768 — Ричард Аркрайт патентует прядильную машину.

1769 — Джеймс Уатт создает улучшенный паровой двигатель.

1774 — Жорж Луи Лесаж патентует электрический телеграф.

1775 — Александр Каммингс изобретает туалет со сливом. Жак Перье изобретает пароход.

1776 — Дэвид Бушнелл конструирует подводную лодку.

1779 — Сэмюэл Кромптон изобретает текстильную машину.

1780 — Бенджамин Франклин создает бифокальные очки. Гервинус изобретает циркулярную пилу.

1783 — Луи Себастьян демонстрирует первый парашют. Бенджамин Хэнкс патентует часы с автоматическим заводом. Братья Монгольфье изобретают воздушный шар.

Англичанин Генри Корт создает стальной ролик для производства стали.

1784 — Эндрю Мейкл изобретает молотилку. Джозеф Брама изобретает предохранитель.

1785 — Эдмунд Картрайт изобретает ткацкий станок. Клод Бертолле создает химическое отбеливание. Карл-Август Куломб изобретает крутильные весы. Жан Пьер Бланшар создает парашют, пригодный для эксплуатации.

1786 — Джон Фитч конструирует пароход.

1789 – Изобретается гильотина.

1790 — Соединенные Штаты выпускают свой первый патент, выданный Уильяму Полларду из Филадельфии на прядильную машину для хлопка.

1791 — Джон Барбер изобретает газовую турбину. Появляется первый велосипед в Шотландии.

1792 — Уильям Мердок изобретает газовое освещение. Появляется первая скорая помощь.

1794 — Эли Уитни патентует хлопкоочистительную машину. Уэльсец Филипп Вогэн изобретает шарикоподшипники.

1795 — Франсуа Аппер изобретает емкость для хранения еды.

1796 — Эдвард Дженнер открывает вакцинацию оспы.

1797 — Уиттмор патентует кардочесальную машину. Британский изобретатель Генри Модсли создает первый прецизионный токарный станок.

1798 – Создан первый безалкогольный напиток. Алоис Сенефелдер изобретает литографию.

1799 — Алессандро Вольта изобретает батарею. Луи Роберт конструирует длинносеточную бумагоделательную машину для производства бумажных листов.

Поиск Лекций

Развитие науки и техники в 18 веке

Огромное влияние на становление и развитие российской науки и техники оказали реформы Петра I и особенно процесс европеизации культуры, приведший, в том числе, и к знакомству с достижениями европейской науки, установлению контактом с ее ведущими деятелями. Итогом этого процесса стало создание в 1724-25 гг. Императорской академии наук и художеств, что означало организационное оформление российской науки. Учитывая фактическое отсутствие на тот момент отечественных ученых, в Российскую Академию было приглашено большое количество европейских ученых, сыгравших большую роль в становлении российской науки. Особо следует отметить швейцарского математика и логика Л. Эйлера, итальянского физика А. Бернулли, немецкого физика и химика Г. Крафта, географа Д. Мессершмидта, историка и архивариуса Г. Миллера. Академией регулярно публиковались сборники научных трудов, издавался, правда, нерегулярно, журнал Академии Наук. При этом деятельность ученых полностью финансировало государство. Все это способствовало постепенному формированию отечественных научных кадров, значительный отрыв в научной сфере от Европы (почти в 600 лет) был преодолен меньше чем за полвека.

Развитие естественных наук в России были связано, прежде всего, с деятельностью выдающегося ученого-энциклопедиста М.В. Ломоносова (1711 – 1765), совершившего открытия в области физики, химии, астрономии (закон сохранения энергии, молекулярная теория строения вещества, «эфирная» теория атмосферного электричества). Ученый предложил конструкцию светосильной зрительной трубы, усовершенствовал телескоп Ньютона, открыл атмосферу Венеры, наблюдая в мае 1761 г. за прохождением Венеры по диску Солнца. Научные интересы М.В. Ломоносова распространялись и на сферу гуманитарных наук, им была сформулирована антинорманнская теория происхождения Древнерусского государства. Его литературные способности (он писал стихи) тоже заставляют восхищаться («Ода на взятие Хотина» и др.).

Развитие горнорудной промышленности в России повлияло на становлении геологии и минералогии . В. Татищев и Г. Генин составили подробные описания минералов, найденных на территории России (особенно на Урале и в Сибири).

Продолжилось развитие географических знаний. В 1725-27 гг. состоялась 1-ая Камчатская экспедиция В. Гоеринга и А. Чирикова, в ходе которого был открыт пролив между Азией и Америкой. В ходе 2-ой Камчатской экспедиции (1733-43 гг.) под руководством А. Чирикова началось освоение Аляски. По итогам этих экспедиций С. Крашенинниковым было составлено «Описание земли Камчатской» с подробными картами этого региона. Следует также отметить географические экспедиции Мессершмидта в Сибирь (1716-23 гг.), И. Фалька на Алтай, Х. Берданеса в киргизские степи, В. Зуева в Южное Причерноморье (1740-50-у гг.). Все они имели общеевропейскую научную значимость.

В области развития гуманитарных наук в первой половине XVIII в. необходимо отметить, прежде всего, деятельность Г. Миллера и В. Татищева по сбору летописей и других архивных источников. Начался процесс их опубликования. Одновременно появились первые научные работы по отечественной истории аналитического характера П. Шафирова («История Советской войны»), В. Татищева («История Древней Руси»), Г. Миллера (статьи по древнерусской истории). Кроме того, в процессе изучения древних летописей Г. Миллер сформулировал норманнскую теорию происхождения Древнерусского государства. С ее аргументированной критикой выступил М.В. Ломоносов, сформулировавший антинорманнскую теорию.

В числе достижений этого периода – становление системы светского образования. Строительство флота, регулярной армии, развитие промышленности, освоение природных недр требовало квалифицированных специалистов. Российскому государству нужны были пехотные и морские офицеры, администраторы, ремесленники, рудокопы, заводчики, торговцы. В частности, с открытием в 1700 г. в Москве в Сухаревой башне «навигацкой» школы началось становление в России технического образования. Возникла сеть «цифирных» школ (это низшие провинциальные математические школы). Основанная еще в 1687 г. Славяно-Греко-Латинская академия превратилась в общероссийский центр подготовки кадров для нужд государства и церкви, с 1701 года она стала Славяно-латинской академией.

Начала формироваться система военного образования, в частности была установлена единая система обучения в армии и на флоте, открыты военные учебные заведения (навигационная, артиллерийская, инженерная школы). Для подготовки офицерских кадров создавались специальные школы и Морская академия.

В развитие науки и образования второй половины XVIII в. значительный вклад внесли либерально-просветительские начинания Екатерины II, в частности создание общероссийской государственной системы образования. Наряду с закрытыми сословными учебными заведениями (Воспитательные дома в Москве и Петербурге, Смольный институт благородных девиц с отделением для девочек мещанок в Петербурге, Коммерческое училище в Москве, кадетские корпуса) в ходе школьной реформы 1782-86 гг. были учреждены общеобразовательные двухлетние малые народные училища в уездных и четырехлетние главные народные училища в губернских городах. Во вновь созданных школах вводились единые сроки начала и окончания занятий, классная урочная система, разрабатывались методики преподавания дисциплин и учебная литература, единые учебные планы. Новые училища вместе с закрытыми шляхетскими корпусами, благородными пансионами и гимназиями при Московском университете составляли структуру среднего образования России. К концу XVIII столетия в России насчитывалось около 550 учебных заведений с общим числом 60-70 тыс. учеников, не считая домашнего образования.

Вместе с тем, образование в России, как и все другие сферы жизни страны, в основе своей имело сословный характер. Большая часть населения не была затронута реформой. Кроме того, просветительские усилия императрицы в сфере народного образования «саботировались» как местными приказами общественного призрения, которые должны были изыскивать средства для их содержания, так и самим населением. Родители учеников «главных училищ» (это были дети мещан, купцов и солдат) не считали нужным доводить детей до окончания курса и старшие классы почти пустовали. В небольших городах деятельность школ находилась в зависимости от щедрости местных городских дум. Сначала малых училищ открылось довольно много, но скоро думы начали тяготиться содержанием училищ - число школ стало уменьшаться.

В рассматриваемый период (вторая половина XVIII столетия) происходит окончательное оформление российской науки, чему во многом способствовала деятельность Российской Академии Наук и особенно открытие в 1755 г. Московского университета, ставшего вскоре главным научным центром страны. Значительную роль в открытие университета сыграла деятельность М.В. Ломоносова. Его ученики и коллеги (академики) ─ астроном С.Я. Румовский, математик М.Е. Головин, географы и этнографы С.П. Крашенинников и И.И. Лепехин, физик Г.В. Рихман и др. ─ обогатили не только отечественную, но и мировую науку замечательными открытиями.

Развитие науки и становление научных центров, появление новых направлений в исследовательской деятельности ученых, во многом, было связано с поддержкой государства. Государство финансировало деятельность Академии наук, научные экспедиции, стажировку российских ученых за границей, выпуск учебной литературы. Например, Екатерина II оказала значительное содействие академику П.С. Паласу (1741-1811) в издании сравнительного словаря «всех языков и наречий» в 1789 г. Императрица не была довольна первым изданием и через два года вышли уже 4 тома, значительно доработанные и дополненные.

В числе выдающихся достижений в сфере естественных наук в России в рассматриваемый период стали исследования физика В.В. Петрова(1761-1834), в частности открытие им явления вольтовой дуги (первое электрическое явление, получившее приложение на практике). В. В. Петровым проводились также исследования химического действия тока, электрических явлений в газах, электропроводности и люминесценции.

Физик и математик С.Котельников (1723-1806) изучал проблемы равновесия и движения тел, ввел понятие прочности материала. В период с 1771 по 1797 гг. он управлял Кунсткамерой и собрал богатейшую коллекцию для естественнонаучного музея.

Астрономическую науку пополнили исследования академика Петербургской АН С. Румовского (1734-1812). Он составил первый для России сводный каталог астрономических пунктов.

Появление первого в России «Минералогического словаря» произошло благодаря исследованиям одного из учеников М.В. Ломоносова академика В. М. Севергина (1765-1826), разработавшего также отечественную научную терминологию по химии, ботанике, минералогии. В.М. Севергин выступал за сближение теории с практикой, по его инициативе с 1804 г. начал издаваться «Технологический журнал», в котором печатались труды по науке и технике не только отечественных, но и зарубежных деятелей.

В этот период были заложены основы российской медицины (Н. Максимович ─ основатель института акушерок, Д.С. Самойлович ─ исследователь чумы и разработчик мер по борьбе с ее эпидемией).

В 60-70-е гг. XVIII в. были организованы Академические экспедиции П.С. Палласа, С.Г. Гмелина, И.И. Лепехина и др. по изучению природы и культуры народов России, оставившие после себя подробные описания Поволжья, Урала, Сибири.

Наряду с естествознанием активное развитие получили гуманитарные науки, формировавшиеся под явным влиянием идеологии Просвещения. В этой связи следует особо выделить деятельность Вольного экономического общества (1760-70-е гг.) по популяризации экономических знаний. Один из самых активных его участников А.Т. Болотова (1738-1833) провел большие исследования в области агрономии и политэкономии.

В исторической науке помимо сбора источников и их публикации (были впервые изданы многие летописи, а также «Русская правда») предпринимаются первые попытки создать обобщающий труд по российской истории (работы В.Н. Татищева, И.Н. Болтина, М.М. Щербатова). Многие их наработки были впоследствии использованы Н.М. Карамзиным при написании «Истории государства Российского».

С 1770-х гг. в России начинает формироваться юридическая наука, связанная с именем первого российского профессора права Московского университета С. Десницкого, находившегося под влиянием правовых доктрин французских Просветителей.

В 1780-90-х гг. происходит формирование и политологических знаний, зарождаются три основных направления общественно-политической мысли: либеральное (выраженное в трудах канцлера Н.И. Панина, его секретаря и драматурга Д.И. Фонвизина, Н.И. Новикова – одного из руководителей русских масонов, популяризатора философии Просвещения, издателя около 1/3 всех российских книг в 1780-е гг.), консервативное (выражено в трудах М.М. Щербатова, прежде всего «Путешествие в Землю Офирскую» и «О повреждении нравов в России»), радикально-демократическое (труды А.Н. Радищева, прежде всего «Путешествие из Петербурга в Москву» (1790г.) и ода «Вольность».).

Таким образом, во второй половине XVIII в. российская наука окончательно оформилась, основным научным центром стал Московский университет. Эволюция научной мысли происходило в русле общеевропейских тенденций под влиянием рационализма и философии Просвещения. Многие исследования и открытия в области естествознания заложили основу для будущих открытий.

Обращает на себя внимание и энциклопедический характер деятельности большинства российских ученых. Происходит сближение науки с практикой, что в частности выразилось в создании Словаря П.С. Палласа.

Вместе с тем, со стороны правящей системы наука рассматривалась как неотъемлемый элемент западной, европейской культуры, обязательный элемент европеизации страны, то, что не стыдно продемонстрировать Европе. Многие научные открытия просто оказались не востребованы временем. Так, изобретенный В. Рихманом электрометр ─ первый прибор, применяемый для количественных измерений электрических величин, стал известен только после его трагической смерти Рихмана, описание прибора появилось в английских журналах. Предложенный М.В. Ломоносовым (отличный от Франклиновского) способ защиты зданий от молнии остался только в его докладе.

©2015-2018 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Нарушение авторских прав и Нарушение персональных данных

Известные изобретения 18 века дали толчок технологической революции следующего столетия с применением машинного оборудования и приспособлениями для прогресса человеческого общества.

Котел, цилиндр и поршень

Английский изобретатель 18 века Томас Ньюкомен и его помощник Джон Кэлли, стеклодув и сантехник прогрессируют в некоторых потенциально прибыльных экспериментах. Они знают о высокой стоимости насосов, которые поднимают воду из медных и оловянных рудников поэтому работают над улучшением парового насоса.

Они совмещают 2 элемента которые отдельно изобретены: поршень французского изобретателя 17 века Дени Папина и паровой насос английского механика Томаса Севери. В простейшем двигателе Ньюкомена поршень связан цепью с большим коромыслом, как двуплечий рычаг. Насос через цепь присоединялся с противоположным концом коромысла. При рабочем ходе поршень поднимается под действием пара.

После этого холодная вода, налитая снаружи, конденсируется в пар и создает вакуум. Вакуум заставляет поршень спуститься в цилиндр. Цепь тащит вниз один конец коромысла, активируя насос на другом конце.

Как это часто бывает в развитии науки и техники именно авария дала новому изобретению стимул для дальнейшего совершенствования. В одном из швов цилиндра появилась трещина. В результате немного холодной воды, чтобы стекать наружу, попала в цилиндр. Она создала вакуум настолько быстрый и настолько сильный что появилась энергия способная двигать коромысло.

С этим событием обнаруживается еще одна особенность парового двигателя. Во всех вновь разработанных двигателях, которые вскоре начинают работать в шахтах Англии, пар конденсируется струей холодной воды, впрыскиваемой в цилиндр.

Первый из работающих двигателей был установлен в 1712 году в угледобывающей шахте возле замка города Дадли. Он успешно работал здесь уже много лет, как первый из многих в горнодобывающих районах Великобритании. Машина, несомненно, нарушает патент механика Томаса Севери, потому что нельзя отрицать, что она работает “по двигательной силе огня”. Но отдельно изобретение Томаса Севери не имело большого коммерческого успеха. Изобретатели 18 века пришли к мировому соглашению, подробности которого не известны.

Даже с улучшениями изобретателей эти машины подходят только для медленной неустанной работы в шахтах. Доказательства более широкого потенциала парового двигателя должны будут ждать изобретательского гения Джеймса Уотта. В 1774 г. Джеймса Уотт построил первую паровую машину эффективнее двигателя Ньюкомена.

Ртутный термометр

Габриэль Даниэль Фаренгейт, немецкий стеклодув и приборостроитель, работающий в Голландии, заинтересован в улучшении конструкции термометра, который используется уже полвека. Спирт быстро расширяется с повышением температуры с совершенно нерегулярной скоростью расширения. Это создает неточные измерения и техническую проблему дуть стеклянные трубки с очень узкими отверстиями.

К 1714 году Фаренгейт добился больших успехов на техническом фронте, создав два отдельных спиртовых термометра, которые относительно точно показывают нагретость. В этом же году он знакомится с исследованиями французского физика Гийома Амонтона по термическим свойствам ртути.

Ртуть расширяется меньше, чем спирт (примерно в семь раз меньше при том же повышении температуры), но это происходит более последовательно. Он строит первый ртутный термометр, который впоследствии становится стандартным.

Остается проблема, как откалибровать термометр, чтобы показать градусы температуры. Единственным практическим методом является выбор двух температур, которые могут быть установлены независимо друг от друга, пометить их на термометре и разделить промежуточную длину трубки на несколько равных значений.

В 1701 году Ньютон предложил температуру замерзания воды для нижней шкалы и температуру человеческого тела для верхней границы. Фаренгейт, привыкший к холодным зимам Голландии, хочет включать температуру ниже точки замерзания воды. Поэтому он принимает температуру крови для верхней части его шкалы, а температуру замерзания соленой воды для нижней крайности.

Измерение обычно производится кратно 2, 3 и 4, поэтому Фаренгейт делит свою шкалу на 12 секций, каждая из которых делится на 8 равных частей. Это дает ему в общей сложности 96 градусов, ноль является точкой замерзания рассола и 96° (в его несколько неточном чтении) средняя температура крови человека. С его термометром, откалиброванным на этих двух точках, Фаренгейт может давать показания для точки замерзания (32°) и температуры кипения (212°) воды.

Более логичным был швед Андерс Цельсий который предложил в 1742 году свою шкалу. Его стоградусная шкала показывает температуру замерзания и кипения воды как 0° и 100°. Во многих странах эта менее сложная система внедряется более двух столетий. Это была .

Хронометр

Изобретения 18 века назрели в части местоопределения. Два столетия океанских путешествий, начиная с первых европейских открытий, сделали все более важным, чтобы капитаны судов – будь то в морском или торговом бизнесе могли точно рассчитать свое положение в любом из морей мира. С помощью простой и древней астролябии звезды показывают широту. Но на вращающейся планете, долгота определяется сложнее. Для определения долготы необходимо знать, сколько времени, прежде чем можно узнать, что это за место.

Важность этого становится очевидной, когда британское правительство в 1714 году предлагает огромный приз в размере 20 000 фунтов стерлингов любому изобретателю 18 века, который сможет придумать часы, способные поддерживать точное время в море.

Условия были достаточно жесткие на то время. Чтобы выиграть приз, хронометр (торжественно научный термин для часов, впервые используемый в документе) должен быть достаточно точным, чтобы вычислить долготу в пределах тридцати морских миль в конце путешествия в Вест-Индию. Это означает, что в бурных морях, сырых соленых условиях и резких перепадах температуры прибор должен терять или набирать не более трех секунд в день – уровень точности, непревзойденный в это время лучшими часами в самых спокойных лондонских гостиных.

Вызов принимает линкольнширский плотник и часовщик самоучка Джон Харрисон (1693-1776). Ему понадобилось почти шестьдесят лет, прежде чем он выигрывает деньги. К счастью, он живет достаточно долго, чтобы забрать их.

К 1735 Гаррисон построил первый хронометр, который он считал соответствующим необходимым стандартам. В течение следующей четверти века он заменяет его тремя улучшенными моделями, прежде чем официально пройдет тест правительства. Его нововведения включают подшипники которые уменьшают трение, утяжеленные балансы соединенные спиральными пружинами для того чтобы уменьшить влияния движения, и использование 2 металлов в балансирной пружине, чтобы справиться с расширением и сужением по изменению температуры.

Первые “морские часы” Гаррисона в 1735 году весят 33 килограмма и почти метр во всех измерениях. Его четвертый экземпляр, изготовленный в 1759 году, больше похож на круглые часы с 15 см в диаметре. Именно этот хронометр выдерживает морские испытания.

Изобретатель Лаэннек и стетоскоп

Рене Лаэннек, врач больницы Некер в Париже, специализировался на заболеваниях грудной клетки. Два события 1816 года дают ему представление о значительном вкладе в медицинскую практику.

Гуляя во дворе Лувра, он видит детей, играющих в акустическую игру с длинной веткой. Мальчик царапает по одному концу дерева, его друг другим концом приложенным к уху слышит ясно звук. Вскоре после этого Лаэннека посещает пациентка, слишком пухлая, чтобы ее сердцебиение было легко различимо, но слишком молодая, чтобы он мог прижать ухо к груди с приличием. Следуя примеру мальчиков, он закатывает лист бумаги в трубочку. Он мягко кладет один конец на грудь дамы, а другой-на ухо.

Лаэннек удивлен, обнаружив, что через трубку он слышит сердце с гораздо большей ясностью, чем с ухом на груди пациента. Он наткнулся на изобретение 18 века – принцип стетоскопа (от греческого stethos – груди, scopein – наблюдать).

Лаэннек теперь строит полую деревянную трубку длиной около 20 сантиметров с концами, предназначенными для плотного прилегания к груди и уху. Он проводит три года, анализируя странные и часто бурные звуки, которые доходят до него, когда пациенты дышат. Поначалу он не может их истолковать. Но он отмечает разнообразие звуков, слышимых у неизлечимо больных пациентов и наблюдает за состоянием их легких и сердца.

С помощью этого средства Лаэннек способен идентифицировать и описать характерные звуки различных стадий бронхита, пневмонии и – что все более важно, как одно из самых распространенных заболеваний XIX века – туберкулеза. Исследования Лаэннека опубликованы в 1819 году в Traité de l’auscultation médiate (Трактат о посреднической Аускультации). Аускультация, или прослушивание тела для диагностических целей, до сих пор всегда было с ухом врача, прижатым к телу пациента. Стетоскоп становится опосредующим инструментом.

Позже изобретением 18 века предложено трубка из резины как более удобная. А в 1852 году вводится знакомая современная версия, позволяющая врачу пользоваться обоими ушами.

Контактные линзы

Немецкий физиолог Адольф Фик шлифует стеклянные линзы в 1887 году до очень точной и необычной формы. Они должны точно соответствовать поверхности глаз пациента. Эти изобретения 18 века как пара очков, вместо того, чтобы быть поддержанными на носу, цепляются за глаза.

Контактные линзы остаются странностью (и, без сомнения, очень тревожной), пока они не начнут изготавливаться из пластика в 1940-х годах. После этого смелая простая идея немецкого физиолога доказывает свою ценность в ошеломляющем диапазоне адаптаций – таких как мягкие линзы, линзы длительного ношения, одноразовые линзы, линзы для изменения цвета глаз и даже бифокальные заменяющие .

БЕРИНГ ВИТУС ИОНАССЕН (1681–1741). Мореплаватель, капитан-командор российского флота, выходец из Дании.

По поручению царя Петра I во главе 1-ой Камчатской экспедиции (1725–1730) он прошёл через всю Сибирь до Тихого океана, пересёк полуостров Камчатка и установил, что на севере сибирский берег поворачивает на запад. Первая экспедиция Беринга явилась прологом к дальнейшим исследованиям северо-востока Азии. Понимая это, он писал: "Америка, или иные между оной лежащие земли, не очень далеко от Камчатки... Не без пользы было, чтоб Охотской или Камчатской водяной проход, до устья реки Амура и далее, до Японских островов, выведывать...". И Беринг был назначен руководителем 2-ой Камчатской (Великой Северной) экспедиции (1733–1743), в ходе которой было точнейшим образом исследовано сибирское побережье, открыты побережье полуострова Аляска и ряд островов Алеутской гряды. Заболев во время зимовки на острове, капитан-командор окончил жизненный путь 19 декабря 1741 г. Ныне остров, где отважный мореплаватель нашел вечный покой, носит название острова Беринга. На всех картах мира полузакрытое море на севере Тихого океана, по которому он плавал, названо его именем - Берингово море, и пролив, расположенный между материками Евразия и Северная Америка и соединяющий Северный Ледовитый океан с Тихим океаном, - Берингов пролив. А острова, на которые выбросило его шхуну "Святой Петр", называются Командорскими.

Завершил 2-ую Камчатскую экспедицию после смерти Беринга его помощник, капитан-командор Алексей Ильич Чириков (1703–1748), который на шлюпе "Святой Павел" подошёл к берегам Америки.

БЕТАНКУР АВГУСТИН АВГУСТИНОВИЧ (1758–1824). Инженер-механик и строитель.

Под руководством Бетанкура выполнен ряд важных работ: переоборудован Тульский оружейный завод, установлены на нем паровые машины, созданные по его проекту; сооружено здание Манежа в Москве, перекрытое уникальными по величине пролета (45 м) деревянными фермами и т. д. По инициативе Бетанкура в Петербурге в 1810 г. учрежден Институт путей сообщения, которым он руководил до конца жизни.

ВИНОГРАДОВ ДМИТРИЙ ИВАНОВИЧ (1720?–1758). Изобретатель русского фарфора.

Учился в Славяно-греко-латинской академии в Москве. В 1736 г. вместе с М. В. Ломоносовым и Р. Райзером был послан за границу, где изучал химию, металлургию и горное дело. По возвращении был направлен (1744) на учрежденную русским правительством "порцелиновую мануфактуру" (затем Государственный фарфоровый завод им. М. В. Ломоносова). Поскольку методы получения китайского и саксонского фарфора держались в секрете, Виноградов приступил к работе, не имея никаких данных о технологии производства.

Разработал технологию производства и получил первые образцы фарфора, изготовленные из отечественного сырья (1752). О своих опытах рассказал в рукописи "Обстоятельное описание чистого порцелина, как оной в России при Санкт-Петербурге делается купно с показанием всех к тому принадлежащих работ".

ГЕННИН ВИЛИМ ИВАНОВИЧ (1676–1750).

Выдающийся руководитель горного производства и станкостроитель. Время управления Генниным (1722–1734) было важным периодом в истории промышленности Урала. Под его руководством были осуществлены важные мероприятия в области организации, совершенствования техники и технологии производства. Управлял также Сестрорецким и Тульским оружейными заводами.

ГЕОЛОГИЧЕСКОЕ ИЗУЧЕНИЕ ТЕРРИТОРИИ РОССИИ

В начале XVIII в. поиски полезных ископаемых привели к открытию Алопаевского месторождения меди (1702), огнеупорных глин (1704), минеральных вод близ Петрозаводска (1714), каменного угля на Дону и в Воронежской губернии (1721), каменного угля на территории современного Кузнецкого бассейна (1722), самоцветов в Забайкалье (1724).

В 1768–1774 гг. состоялись академические экспедиции, которые изучали геологическое строение России: маршруты экспедиции Ивана Ивановича Лепехина (1740–1802) охватили Поволжье, Урал, север Европейской России; экспедиция Петра Симона Палласа (1741–1811) обследовала Среднее Поволжье, Оренбургский край, Сибирь до Читы и составила описание строения гор, холмов, равнин; экспедиция Иоганна Георга Гмелина (1709–1755) дошла через Астраханский край до Дербента и Баку и т. д.

ДЕМИДОВЫ. Русские заводчики, землевладельцы, ученые, просветители, меценаты.

Их родословная восходит к тульским кузнецам, с 1720 г. - дворяне. В конце XVIII в. вошли в круг высшего чиновничества и знати, основали свыше 50 заводов, производивших 40% чугуна в стране. Наиболее известны:

Никита Демидович Антуфьев (1656–1725) - родоначальник и организатор строительства металлургических заводов на Урале.

Павел Григорьевич Демидов (1738–1821) - основатель Демидовского лицея в Ярославле - высшего учебного заведения для детей дворян и разночинцев в 1803–1918 гг. В 1918 преобразован в университет.

Павел Николаевич Демидов (1798–1840) - почетный член Петербургской АН, учредитель Демидовских премий, присуждавшихся в 1832–1865 гг. Академией за труды по науке, технике, искусству. Эти премии считались самой почетной научной наградой России.

КОТЕЛЬНИКОВ СЕМЕН КИРИЛЛОВИЧ (1723–1806). Академик Петербургской АН.

Талантливый русский ученый, ученик М. В. Ломоносова и Л. Эйлера, автор "Книги, содержащей в себе учение о равновесии и движении тел" - первого русского учебника механики, наиболее серьезного из всех оригинальных и переводных трудов по механике, изданных в России в XVIII в.

КРАФТ ГЕОРГ ВОЛЬФГАНГ (1701–1754). Физик, математик, академик Петербургской АН.

Автор первой русской книги по механике "Краткое руководство к познанию простых и сложных машин" (1738), а также книги "Краткое введение в геометрию" (1740) и нескольких учебников. Многое сделал для преподавания и популяризации механики в России.

КРАШЕНИННИКОВ СТЕПАН ПЕТРОВИЧ (1711–1755). Основатель русской научной этнографии, исследователь природы Камчатки.

Труд ученого "Описание земли Камчатки", изданный в 1756 г., был не только первым русским сочинением, в котором давалось описание одной из областей Сибири, но и первым в западноевропейской литературе.

Он состоял из 4-х частей. Часть первая - "О Камчатке и о странах, которые в соседстве с нею находятся" - содержала географическое описание Камчатки. Часть вторая - "О выгоде и о недостатках земли Камчатка" - посвящена естественно-историческому описанию Камчатки: флоры, фауны, населяющих землю млекопитающих, птиц и рыб, перспектив животноводства. Часть третья - "О камчатских народах" - представляет собой первый русский этнографический труд: описание быта, нравов, языка местного населения - камчадалов, коряков, курилов. Четвертая часть посвящена истории покорения Камчатки.

Крашенинников был назван за свою книгу "Нестором русской этнографии".

КУЛИБИН ИВАН ИВАНОВИЧ (1735–1818). Выдающийся механик-изобретатель.

С 1749 г. на протяжении более 30 лет заведовал механической мастерской Петербургской АН. Разработал проект 300-метрового одноарочного моста через Неву с деревянными решётчатыми формами (1772). В последние годы жизни изготовил фонарь-прожектор с отражателем из мельчайших зеркал, речное "машинное" судно, передвигающееся против течения, механический экипаж с педальным приводом.

Прославился как автор изготовленных в подарок императрице Екатерине II удивительных часов, имевших вид пасхального яйца. "Диковина видом и величиною между гусиным и утиным яйцом", показывавшая время и отбивавшая часы, половины и четверти часа, заключала внутри себя крохотный театр-автомат. По прошествии каждого часа створчатые двери раздвигались и разворачивалось театрализованное представление. Механизм часов "состоял из слишком 1000 мельчайших колесиков и прочих механических частей". В полдень часы играли сочиненный в честь императрицы гимн. Во второй половине суток они исполняли новые мелодии и стих.

КУНСТКАМЕРА (От нем. Kunstrammer - кабинет редкостей). Первый русский естественно-научный музей.

Открыта в 1719 г. В ней хранились анатомические, зоологические и исторические коллекции, собранные во многих районах России, а также коллекции, приобретённые Петром I в Западной Европе, его личные собрания оружия и произведений искусства. В 30-х гг. XVIII в. превратилась в комплексный музей с отделами искусства и этнографии, естествознания, нумизматики и исторических материалов (кабинет Петра I). К началу XIX в., когда скопилось огромное количество разнообразных коллекций, из нее были выделены в самостоятельные учреждения музеи, существующие и доныне: Музей антропологии и этнографии РАН.

ЛОМОНОСОВ МИХАИЛ ВАСИЛЬЕВИЧ (1711 – 1765)

Первый русский ученый-естествоиспытатель мирового значения, поэт, заложивший основы современного русского литературного языка, художник, историк, поборник отечественного просвещения, развития русской науки и экономики.

Родился в семье крестьянина-помора. Желая получить образование, в конце 1730 г. направился пешком в Москву. Здесь, выдав себя за сына дворянина, в 1731 г. поступил в Славяно-греко-латинскую академию. В 1735 г. в числе лучших учеников был послан в Петербург в только что открытый при Академии наук университет, а затем в Германию для продолжения образования. В 1741 г. вернулся в Петербургскую АН. С 1745 г. первый русский академик Петербургской АН.

"Мудрые науки" составляют естественно-техническое направление его деятельности: химия и физика, астрономия и минералогия, геология и почвоведение, горное дело и металлургия, картография и мореходство. Им впервые разграничены понятия "корпускула" (на языке современной науки - молекула) и "элемент" (атом), сформулирован принцип сохранения материи и движения, сделаны другие открытия, часть из которых принадлежит к золотому фонду мировой науки. Литература, история и национальный язык - вот с чем были связаны исследования ученого в другом, гуманистическом направлении его деятельности. Им были созданы "Российская грамматика" (1756), "Древняя Российская история" (1766). Не случайно В. Г. Белинский назвал его "Петром Великим русской литературы". Научно-организационная деятельность ученого также была плодотворной: открытие первой в России химической лаборатории (1748), разработка проекта переустройства Петербургской АН. По инициативе Ломоносова был основан Московский университет (1755), ныне носящий его имя.

Для Ломоносова были неразделимы наука, техника, искусство. Об этом говорят мозаичные портреты и картины Петра I, Александра Невского, Елизаветы Петровны, Полтавской битвы. С 1763 - член Академии художеств.

МАГНИЦКИЙ ЛЕОНТИЙ ФИЛИППОВИЧ (1669–1739). Первый русский выдающийся педагог-математик.

Считается, что он происходил из крестьян и фамилия его отца была Телятин. Будучи самоучкой, в юности приобретал знания, притягивая их к себе, как магнит. Фамилия "Магницкий" была ему присвоена по указу Петра I, который высоко ценил ученого. С 1701 г. преподавал математику в Школе математических и навигацких наук в Москве. В 1703 г. был издан его главный труд "Арифметика, сиречь наука числительная" - для своего времени энциклопедия математических знаний. В нем обобщаются данные по математике ("цифирная счетная мудрость"), астрономии, навигации. Недаром М. В. Ломоносов называл книгу ученого, по которой он сам обучался, "вратами учености".

Свое научное и методическое значение "Арифметика" сохраняла не менее половины столетия, а ее историческое значение как книги, по которой можно судить о состоянии математического образования в России в первой половине XVIII в., сохраняется и в наше время.

МАНУФАКТУРЫ, (от лат. manus - рука и faktura - изготовление).

Предприятие, основанное на разделении труда и на ручной ремесленной технике.

В первой четверти XVIII в. в России было создано более 200 предприятий мануфактурного типа, из которых свыше трети составляли металлургические и металлообрабатывающие заводы. Всего при Петре I было сооружено 15 казенных и 30 частных чугунно-литейных и оружейных заводов. Например, в 1724 г. на русских доменных заводах было выплавлено 1 165 тыс. пудов чугуна. К концу XVIII в. в России насчитывалось около 190 горных заводов, а общее число промышленных предприятий достигло 1160.

ЛАПТЕВЫ ДМИТРИЙ ЯКОВЛЕВИЧ (1701–1767) И ХАРИТОН ПРОКОФЬЕВИЧ (1700–1763/64). Российские мореплаватели, участники Великой Северной экспедиции, двоюродные братья.

На слабых деревянных судах, с примитивными приборами, они смогли исследовать побережье Северного Ледовитого океана между рекой Леной и мысом Беринга, доставив разнообразные сведения о природе края, его географии, населении, животном мире и растительности, береговой линии. В их честь названо окраинное море Северного Ледовитого океана между полуостровом Таймыр и островами Северная Земля и Новосибирские.

ЛЬВОВ НИКОЛАЙ АЛЕКСАНДРОВИЧ (1752–1803).

Русский ученый, архитектор, поэт, график. Член Российской АН (с 1783), почетный член Петербургской академии художеств (с 1786). Автор ряда выдающихся архитектурных сооружений. Занимался также вопросами экономики, строительной техники, геологии.

В районе Валдайской возвышенности и в г. Боровичи в 1786 г. открыл залежи "земляного" каменного угля, организовал его добычу и исследования состава. Этому посвящена его книга "О пользе и употреблении русского земляного угля" (1799). Многое сделал для становления отечественной каменноугольной промышленности. Написал первый в России труд по отопительно-вентиляционной технике (1795–1799).

НАРТОВ АНДРЕЙ КОНСТАНТИНОВИЧ (1693 – 1756).

"Петра Великого механик и токарного искусства учитель" был одним из выдающихся изобретателей, подготовивших переход от ремесленного производства к фабричному. В Санкт-Петербурге и Париже поныне хранятся станки русского ученого, опередившего техническую мысль Европы более чем на полвека. Главным его изобретением был механический суппорт токарного станка, позволивший изготовлять стандартные детали, а также скорострельная батарея (1741), подъемный винт для регулирования угла возвышения, механизм для подъема Царь-колокола и многие другие механизмы.

НАУЧНЫЕ ОПИСАНИЯ

На протяжении XVIII в. собирались ценные для русской и мировой науки географические, ботанические, зоологические, этнографические материалы. С этой целью в 1714–1717 гг. на Каспийское море, в Хиву и Бухару направилась экспедиция под началом сподвижника Петра I Александра Бековича-Черкасского (?–1717), которая подтвердила существование русла Аму-Дарья-Узбой, собрала сведения о течении Аму-Дарьи и доказала ее впадение в Аральское море. В 1719–1726 гг. участником экспедиции, гидрографом Федором Ивановичем Соймоновым (1692–1780) было описано все побережье Каспийского моря, а в 1720 г. сделана первая русская карта Каспия, которую Петр I отослал в Парижскую Академию наук. В 1734 г. им же был издан атлас Балтийского моря.

Большое значение имело проводившееся в 1720–1727 гг. по заданию Петра I экспедицией Даниила Готлиба Мессершмидта (1685–1735) исследование внутренних районов Сибири. В результате были собраны естественно-исторические материалы, коллекции млекопитающих и птиц, описаны образ жизни и географическое распространение многих сибирских животных.

Одним из результатов 2-ой Камчатской (Великой Северной) экспедиции явилась книга Иоганна Георга Гмелина "Флора Сибири" (1747–1769), содержащая описание 1 200 видов растений и 300 зарисовок отдельных особей; Степан Петрович Крашенинников (1711–1755) охарактеризовал далекую часть Сибири в своём труде "Описание земли Камчатки" (1756); историк Герард Фридрих Миллер (1705–1783) составил несколько обзорных историко-географических карт, изображавших северо-восток Азии и север Тихого океана, написал книгу "История Сибири". Натуралист Георг Вильгельм Стеллер (1709–1746) подготовил сочинение "О морских животных" (1741), в котором содержалось описание названной его именем морской коровы (Стеллерова корова), калана, сивуча и котика.

Итогом состоявшейся в 1768–1769 гг. арктической научно-исследовательской экспедиции явилась карта Арктики, на которую были нанесены четыре острова Шпицбергенского архипелага.

ОБЩЕОБРАЗОВАТЕЛЬНЫЕ И СПЕЦИАЛИЗИРОВАННЫЕ УЧЕБНЫЕ ЗАВЕДЕНИЯ

Преобразования в гражданской жизни и научно-техническом развитии страны, проводимые Петром I, потребовали подготовки специалистов самых разных профессий. Так появились первые церковные учебные заведения университетского типа - Киево-Могилянская академия (основана в 1632; до 1701 г. - коллегия) и Московская Славяно-греко-латинская академия (основана в 1687 г. под названием Эллино-греческая академия), многие выходцы из которых трудились потом на светском поприще. В 1692 г. в Москве при Пушечном дворе была организована артиллерийская школа, а в 1701 г. - Школа математицких и навигацких наук ("Навигацкая школа"), ставшая первым специализированным высшим учебным заведением. Здесь готовили моряков, судостроителей, геодезистов, картографов. Уже к 1712 г. в ней обучалось 180 учеников из самых разных сословий.

Вслед за Навигацкой школой были открыты инженерное (1711) и артиллерийское (1712) училища, в 1719 г. - Петербургское высшее инженерное училище ("Инженерная рота"), а в 1715 г. - Морская академия. Наряду с техническим и математическим образованием быстро стали развиваться медицинское и технико-фармацевтическое образование. В 1707 г. по указу Петра I была открыта в Москве первая медицинская "госпитальная" школа. К 1733 г. медицинские школы были организованы в Петербурге и Кронштадте. Вместе с московской они сыграли большую роль в подготовке русских врачей и распространении анатомо-физиологических, ботанических и зоологических знаний.

В конце XVIII в. создаются медико-хирургические академии в Петербурге и Москве.

В 1773 г. в Петербурге было организовано Горное училище, которое готовило первых русских геологов. По времени основания было вторым в мире.

С 1714 г. в губернских центрах организуются подготовительные "цифирные" (начальные общеобразовательные) школы, а на Урале и в Сибири - горные школы.

В 1880-е гг. народные училища, в программе которых значительное внимание уделялось математическим и естественным наукам, были открыты в 25 губерниях России.

ПАЛЛАС ПЕТР СИМОН (1741–1811). Русский естествоиспытатель, член Петербургской АН.

В 1768–1774 гг. возглавлял экспедицию Академии в районы Поволжья, Прикаспийской низменности, Башкирии, Урала, Забайкалья, Сибири, результаты которой были опубликованы в его труде "Путешествие по разным провинциям Российского государства" (3 чч., 1773–1788). Он открыл и описал большое количество новых видов птиц, млекопитающих, рыб и насекомых, дал описание их внутреннего строения, сезонной изменчивости, географического распространения. Как палеонтолог произвел исследование ископаемых остатков волосатого носорога, буйвола, мамонта. В области ботаники ему принадлежит первая попытка создания труда по флоре России (1784–1788).

ПЕРВАЯ ОБЩЕДОСТУПНАЯ БИБЛИОТЕКА

Открыта в Петербурге в 1714 г. Ее основу составили личная библиотека Петра I, книги других собраний. К 1725 г. имела около 12 тыс. книг и ценное собрание рукописей.

ПЕРВАЯ ХИМИЧЕСКАЯ ЛАБОРАТОРИЯ

Была построена в 1748 г. при Академии наук как первое в истории страны исследовательское учреждение, прообраз будущего научно-исследовательского института. В основу её работы легли принципы соединения науки и практики. М. В. Ломоносов проводил в ней изыскания в области физики и химии, а также читал лекции студентам, демонстрируя опыты. Так было положено начало семинарам и практическим занятиям, которые вошли в учебный процесс лишь в XIX в.

ПЕРВЫЙ РУССКИЙ УЧЕБНИК МЕХАНИКИ

Вышел в 1722 г. под названием "Наука статическая, или механика" и был составлен для учащихся Петербургской Морской академии. Написан военным и политическим деятелем первой половины XVIII в. Григорием Григорьевичем Скорняковым-Писаревым. Учебник краток: 26 страниц и 21 чертеж. Книга начинается определением предмета механики и перечислением семи "главнейших" машин. В учебнике даны только сложение и разложение сил тяжести. Механика, изложенная в книге, представляет часть статики, изучающую действия сил веса.

ПЕТЕРБУРГСКАЯ АКАДЕМИЯ НАУК (АН)

Её создание - завершающие звено в цепи культурных преобразований петровской эпохи. 28 января (8 февраля по н. ст.) 1724 г. Сенат издал указ об основании Академии – государственного научного учреждения, целью которого было удовлетворение научных и технических потребностей страны. В её состав вошли Кунсткамера, физический кабинет (1725), обсерватория (1730-е гг.), географический департамент (1739), химическая лаборатория (1748, по инициативе М. В. Ломоносова).

С 1803 г. - Императорская АН, с февраля 1917 г. - Российская АН, с 1925 г. - АН СССР, затем с 1991 г. - вновь Российская АН (РАН).

ПОЛЗУНОВ ИВАН ИВАНОВИЧ (1728–1766). Гениальный учёный-самоучка, создатель теплового двигателя и первой в России паровой машины.

Родился в семье вышедшего из крестьян солдата, окончил в 1742 г. первую русскую горнозаводскую школу. С 1748 г. работал на Барнаульском заводе. Занимался самообразованием, изучая труды М. В. Ломоносова, английских и французских изобретателей. Именно здесь задался целью создать совершенный паровой двигатель, чтобы он мог "все положенные на себя тяготы, каковы к раздуванию огня обычно к заводам бывают потребны, носить и, по воле нашей, что будет потребно, исправлять". И далее: "Дабы сей славы (если силы допустят) Отечеству достигнуть и чтоб то во всенародную пользу, по причине большого познания о употреблении вещей, поныне не весьма знакомых (по примеру наук прочих), в обычай ввести".

В 1763 г. были представлены записка, расчеты и проект первой в мире универсальной паровой машины мощностью 1,8 л. с. Но проект этот не был реализован. Впервые выдвинутый ученым принцип сложения работы нескольких цилиндров на одном валу нашёл в конце XIX в. широкое применение в двигателях внутреннего сгорания.

ПРОХОРОВЫ . Русские капиталисты, выходцы из крестьян.

Василий Иванович Прохоров, в 1799 г. в Москве основал текстильную фабрику - Трехгорную мануфактуру. В 1843 г. был открыт Торговый дом "Бр. И. К. и Я. Прохоровы". В 1874 г. братья Иван и Алексей Прохоровы совместно с двумя служащими Торгового дома создали "Товарищество прохоровской трехгорной мануфактуры". Основной капитал фабрики к 1917 г. за прошедшее столетие был увеличен с 200 тысяч до 8 млн. рублей.

РИХМАН ГЕОРГ ВИЛЬГЕЛЬМ (1711–1753). Русский физик, академик Петербургской АН.

Основные работы этого ученого посвящены изучению теплоты и электричества. Впервые ввел в науку об электричестве количественные измерения. В 1745 г. сделал сообщение на заседании Петербургской АН об изобретенном им электроизмерительном приборе - "электрическом указателе". Этот прибор Рихман и Ломоносов использовали в своих исследованиях по электричеству. В 1748–1751 гг. открыл явление электростатической индукции. В 1752–1753 гг. совместно с Ломоносовым проводил исследования атмосферного электричества с помощью так называемых "громовых машин". 26 июля 1753 г. при проведении опытов с незаземленной "громовой машиной" погиб от удара молнии.

РОСТ КНИГОПЕЧАТАНИЯ

За 60 лет XVIII в. вышло 1 134 названия, в среднем по18 книг в год. В 1708 г. выходит первая учебная литература научно-технического содержания - "Геометрия славянски землемерия" и "Книга о способах, водохождение рек свободное". Первым научно-популярным журналом стало приложение к газете "Санкт-Петербургские ведомости ", выходившее ежемесячно в 1727–1742 гг.

В течение 1761–1770 гг. вышло 1 050 книг, т. е. по 105 книг в год. В 70-х гг. XVIII в. - 146 книг ежегодно, в 80-х гг. среднее число книг поднялось до 268 в год. С 1791 по 1795 г. выпущено 1 099 книг.

ТАТИЩЕВ ВАСИЛИЙ НИКИТИЧ (1686–1750).

Историк, государственный деятель, автор первого обобщающего фундаментального труда по истории России, над которым он работал более двадцати лет (представлен в Академию наук в 1739 г.). Его полное издание под названием "История Российская с древнейших времен неусыпными трудами через тридцать лет собранная и описанная покойным тайным советником и астраханским губернатором Василием Никитичем Татищевым" вышло в 1768–1848 гг.

Происходил из старинного дворянского рода, получил систематическое образование по математике, механике, геодезии и др. В 1704–1720 гг. находился на военной службе, участвовал в Северной войне. В 1720–1722 и 1734–1737 гг. управлял казенными заводами на Урале; основал г. Екатеринбург (1721). В 1741–1745 гг. был назначен астраханским губернатором.

Известен также работами по географии и этнографии. Им был составлен краткий общий очерк географии России под названием "Руссиа или, как ныне зовут, Россия" (1739), дана классификация народностей и племен России. Своими сочинениями ученый положил начало научному географическому описанию России.

Татищевым был составлен первый русский энциклопедический словарь - "Лексикон российской исторической, географической, политической и гражданской" (1793, до буквы "К").

ФРОЛОВ КОЗЬМА ДМИТРИЕВИЧ (1726–1800). Русский гидротехник, изобретатель в области горнозаводского дела.

В 1760-х гг. построил несколько "рудотолчейных и рудопромывательных заведений", где все основные операции по обогащению и транспортировке руд были механизированы, устройства, в том числе и повозки на внутризаводских путях, приводились в движение силой воды.

С начала 1770-х гг. Фролов приступил к проектированию и постройке на Змеиногорском руднике грандиозной по тем временам системы гидросиловых установок. Плотина высотой 18 м, возведенная им на реке Змеевке, сохранилась до наших дней.

ЧЕЛЮСКИН СЕМЕН ИВАНОВИЧ (ок. 1700–1764). Полярный исследователь, участник Великой Северной экспедиции.

Исследуя берег полуострова Таймыр с востока на запад, преодолевая морозы и метели, его экспедиция 7 мая 1742 г. достигла мыса, от которого расстилался необозримый простор моря, скованного льдом. В журнале исследователь записал: "...Сей мыс каменный, высоты средней, около мыса льды гладкие, торосов нет. Здесь именован мною оный мыс: восточной северной мыс". Так была достигнута северная точка Азии, а вместе с нею самая северная оконечность материковой суши вообще.

Потомки скажут о Челюскине: "Челюскин - не только единственное лицо, которому сто лет тому назад удалось достигнуть этого мыса и обогнуть его, но ему удался этот подвиг, не удавшийся другим, именно потому, что его личность была выше других. Челюскин, бесспорно, - венец наших моряков, действовавших в том крае".

Открытый им мыс известен на всех картах мира как мыс Челюскина. Кроме того, о мореплавателе напоминают остров Челюскина (в дельте Таймырской губы) и полуостров Челюскина (самая северная часть Таймыра).

ШЛАТТЕР ИВАН АНДРЕЕВИЧ (1708–1768). Русский ученый и государственный деятель.

С 1760 г. был президентом Берг-коллегии. Предложил ряд усовершенствований в процессах плавки благородных металлов и чеканки монет. Автор первой русской книги по пробирному искусству "Описание при монетном деле потребного искусства" (1739), а также ряда работ по металлургии, горному делу, гидросиловым и паровым установкам.

ЭЙЛЕР ЛЕОНАРД (1707–1783). Математик, механик, физик и астроном, оказавший огромное влияние на развитие физико-математических наук в XVIII в. В 1731–1741 гг. и с 1766 г. - академик Петербургской АН.

Сын швейцарского пастора, учился в Базельском университете. В 1727 г. принял приглашение на работу и переехал в Петербург. За время своего первого пребывания в Петербургской АН (1727–1741) подготовил более 75 научных работ, занимался педагогической деятельностью. Выучив русский язык, свободно говорил и писал по-русски. Живя в Германии в течение 1741–1766 гг., не прекращал связи с Петербургской академией, был ее иностранным почетным членом. В 1766 г. вернулся в Россию и прожил здесь до конца жизни.

Всего ученым написано около 850 трудов и огромное количество писем на различные научные темы. Всё его творчество пронизывала идея тесной взаимосвязи между математикой, естественными науками и техникой. Особенно велики заслуги ученого в развитии науки в России. "Вместе с Петром I и Ломоносовым , - писал С. И. Вавилов, - Эйлер стал добрым гением нашей Академии, определившим ее славу, ее крепость, ее продуктивность".


© Все права защищены

XIX век стал для эволюции техники революционным. Так именно в этот период были изобретены механизмы, кардинально изменившие весь ход развития человечества. Большинство этих технологий, хотя были и заметно улучшены, используются и в наше время.
Какие же технические изобретения XIX изменили весь ход развития человечества? Перед вами сейчас будет список важных технических новшеств, совершивших техническую революцию. Этот список не будет являться рейтингов, все технические изобретения имеют равную степень важности для мировой технической революции.

Технические изобретения XIX.
1. Изобретение стетоскопа. В 1816 году французским доктором Рене Лаэннеком был изобретен первый стетоскоп – медицинский прибор для выслушивания шумов внутренних органов (легких, сердца, бронхов, кишечника). Благодаря ему доктора могут, например, услышать хрипы в легких, диагностировав тем самым ряд опасных болезней. Этот прибор потерпел существенных изменений, однако механизм остался прежним и является важным диагностическим средством и сегодня.
2. Изобретение зажигалки и спичек. В 1823 году немецким химиком Иоганном Деберейнером была изобретена первая зажигалка – эффективное средство для получения огня. Теперь огонь можно было зажечь в любых условиях, что сыграло немаловажную роль в жизни людей, в том числе и военных. А в 1827 году изобретателем Джоном Уолкером были изобретены первые спички, основаны на механизме трения.
3. Изобретение портландцемента. В 1824 году Уильямом Аспдином была разработана разновидность цемента, который используется в наши дни практически во всех странах мира.
4. Двигатель внутреннего сгорания. В 1824 году Сэмюелем Брауном был изобретен первый двигатель, который имел внутреннюю систему сгорания. Это важное изобретение дало начало развитию автомобилестроению, кораблестроению и многим другим механизмам, работающих с помощью двигателя. В последствие эволюции это изобретение потерпело множество изменений, но система работы осталась прежней.
5. Фотография. В 1826 году французским изобретателем Жозефом Ньепсом была изобретена первая фотография, основана на способе закрепления изображения. Это изобретение дало важный толчок к дальнейшему развитию фотографии.
6 . Электрогенератор. Первый электрический электрогенератор был изобретен в 1831 году Майклом Фарадеем. Это устройство способно преобразовывать все виды энергии в электрическую энергию.
7. Азбука Морзе. В 1838 году американским изобретателем Сэмюэлем Морзе был создан знаменитый способ кодирования под названием Азбука Морзе. До сих пор этот способ используется в морском военном искусстве и в мореплаванье в целом.
8 . Анестезия. В 1842 году было совершенно одно из самых важнейших медицинских открытий – изобретение анестезии. Ее изобретателем считается доктор Кроуфорд Лонг. Это позволило хирургам проводить операции на пациенте без сознания, что существенно повысило выживаемость, так как до этого оперировали пациентов в полном сознании, от чего те умирали от болевого шока.
9. Шприц. В 1853 году было совершенно еще одно важное медицинское открытие – изобретение привычного для нас шприца. Его изобретателем является французский доктор Шарль-Габриэль Правас.
10. Нефтегазовая буровая установка. Первая нефтегазовая буровая установка была изобретена в 1859 году Эдвином Дрэйком. Это изобретение положило начало добычи нефти и природного газа, что привело к революции в топливной промышленности.
11. Орудие Гатлинга. В 1862 году американским известным в то время изобретателем Ричардом Гатлингом был создан первый в мире пулемет – орудие Гатлинга. Изобретение пулемета стало революцией в военном ремесле и в последующие годы, это оружие становиться одним из самых смертоносных на поле боя.
12. Динамит. В 1866 году Альфредом Нобелем был изобретен знаменитый динамит. Эта смесь полностью изменила основы горной промышленности, а также заложила основу современной взрывчатке.
13 . Джинсы. В 1873 году американским промышленником Левеем Страуссом были изобретены первые джинсы – брюки из невероятно прочной ткани, которые стали одним из основных видов одежды уже более полутора века.
14 . Автомобиль. Первый в мире автомобиль был запатентован Джорджем Селденом в 1879 году.
15. Бензиновый двигатель внутреннего сгорания. В 1886 году было сделано одно из величайших открытий человечества – бензиновый двигатель внутреннего сгорания. Это устройство используется по всему миру в невероятных масштабах.
16. Электросварка. В 1888 году российским инженером была изобретена известная и используемая во всем мире электросварка, позволяющая в короткий срок соединять различные железные детали.
17. Радиопередатчик. В 1893 году известным изобретателем Никола Тесла был изобретен первый радиопередатчик.
18. Кинематограф. В 1895 году братьями Люмьер был снят первый мир кинофильм – знаменитая лента с прибытием поезда на станцию.
19. Рентгеновское излучение. Еще один важный прорыв в медицине был сделан в 1895 году, его совершил немецкий физик Вильгельм Рентген. Он изобрел аппарат для сьемки с помощью рентгеновского излучения. Это устройство, например, может обнаружить перелом человеческой кости.
20. Газовая турбина. В 1899 году изобретателем Чарльзом Кертисом был изобретен механизм, вернее двигатель внутреннего сгорания непрерывного действия. Такие двигатели были значительно мощнее поршневых двигателей, но также и более дорогими. Активно используются и в современном мире.
21. Магнитная запись звука или же магнитофон. В 1899 году датским инженером Вальдемаром Поульсеном был сделан первый магнитофон – устройство для записи и воспроизведения звука с помощью магнитной ленты.
Перед вами был список одних из самых важных технических изобретений XIX. Конечно, в этот период было совершенно большое количество и других изобретений, кроме того, они являются не менее важными, однако эти изобретения заслуживают особого внимания.

Промышленная революция - инновационный период середины 18–19 веков - перенесла людей из преимущественно аграрного существования в относительно городской образ жизни. И хотя мы называем эту эпоху «революцией», ее название несколько вводит в заблуждение. Это движение, которое возникло в Великобритании, не было внезапным взрывом достижений, а представляло собой серию последовательных прорывов, которые опирались или подпитывали друг друга.

Точно так же, как доткомы были неотъемлемой частью 1990-х, именно сделали эту эпоху уникальной. Без всех этих гениальных умов многих важных товаров и услуг, которыми мы пользуемся сегодня, просто не существовало бы. Вне зависимости от того, был ли изобретатель простым мечтателем-теоретиком или упорным создателем важных вещей - эта революция изменила жизни многих людей (включая нас).


У многих из нас фраза «отложите ваши калькуляторы на время экзамена» всегда будет вызывать беспокойство, но такие экзамены без калькуляторов наглядно демонстрируют, какой была жизнь Чарльза Бэббиджа. Английский изобретатель и математик родился в 1791 году, со временем его задачей стало изучение математических таблиц в поисках ошибок. Такие таблицы, как правило, использовались в астрономии, банковском деле и инженерии, и, поскольку создавались от руки, часто содержали ошибки. Бэббидж задумал создать калькулятор и в конечном итоге разработал несколько моделей.

Конечно, у Бэббиджа не могло быть современных компьютерных компонентов вроде транзисторов, поэтому его вычислительные машины были сугубо механическими. Они были удивительно большими, сложными и их было трудно построить (ни одна из машин Бэббиджа не появилась при его жизни). Например, разностная машина «номер один» могла решать полиномы, но ее конструкция состояла из 25 000 отдельных частей общим весом в 15 тонн. Разностная машина «номер два» была разработана в период с 1847 по 1849 год и была более элегантной, наряду с сопоставимой мощностью и в три раза меньшим весом.

Была и другая конструкция, благодаря которой Бэббидж получил звание отца современной вычислительной техники, по мнению некоторых людей. В 1834 году Бэббидж решил создать машину, которую можно было бы запрограммировать. Как и современные компьютеры, машина Бэббиджа могла хранить данные для последующего использования в других вычислениях и выполнять логические операции типа if-then. Бэббидж не особо занимался разработкой конструкции аналитической машины, как в случае с разностными машинами, но чтобы представлять грандиозность первой, нужно знать, что она была настолько массивной, что ей нужен был паровой двигатель для работы.

Пневматическая шина


Как и многие изобретения этой эпохи, пневматическая шина «стояла на плечах гигантов», вступая в новую волну изобретений. Таким образом, хотя часто изобретение этой важной вещи приписывают Джону Данлопу, до него в 1839 году Чарльз Гудиер запатентовал процесс вулканизации каучука.

До экспериментов Гудиера каучук был весьма новым продуктом с относительно небольшим спектром применения, но это, благодаря его свойствам, очень быстро изменилось. Вулканизация, в которой каучук укреплялся серой и свинцом, создавала более прочный материал, подходящий для производственного процесса.

В то время как каучуковые технологии быстро развивались, другие сопутствующие изобретения промышленной революции развивались намного медленнее. Несмотря на такие достижения, как педали и управляемые колеса, велосипеды оставались больше предметом любопытства, нежели практичным видом транспорта на протяжении большей части 19 века, поскольку были громоздкими, их рамы - тяжелыми, а колеса - жесткими и маломаневренными.

Данлоп, ветеринар по профессии, отметил все эти недостатки, когда наблюдал за тем, как его сын с трудом управляется с трехколесным велосипедом, и решил их исправить. Сначала он попытался завернуть садовый шланг в кольцо и обернуть его жидким каучуком. Этот вариант оказался значительно превосходящим уже существующие шины из кожи и укрепленной резины. Очень скоро Данлоп начал производить велосипедные шины с помощью компании W. Edlin and Co., а позже она стала Dunlop Rubber Company. Она быстро захватила рынок и значительно повысила производство велосипедов. Вскоре после этого Dunlop Rubber Company начала производство резиновых шин для другого продукта промышленной революции - автомобиля.

Как и с каучуком, практическое применение следующего пункта долгое время не было очевидным.


Изобретения типа лампочки занимают очень много страниц в книге истории, но мы уверены, что любой практикующий хирург назвал бы анестезию лучшим продуктом промышленной революции. До ее изобретения исправление любого недуга было, пожалуй, более болезненным, чем сам недуг. Одна из самых больших проблем, связанных с удалением зуба или конечности, заключалась в удержании пациента в расслабленном состоянии зачастую с помощью алкоголя и опиума. Сегодня, конечно, мы все можем поблагодарить анестезию за то, что мало кто из нас может вспомнить болезненные ощущения от операции вообще.

Закись азота и эфир были обнаружены в начале 1800-х годов, но оба средства не нашли особого практического применения, кроме бесполезного одурманивания. Закись азота вообще была более известна как веселящий газ и использовалась для развлечения аудитории. Во время одной из таких демонстраций молодой стоматолог Хорас Уэллс увидел, как некто вдохнул газ и повредил ногу. Когда мужчина вернулся на свое место, Уэллс спросил, было ли больно пострадавшему, и услышал в ответ, что нет. После этого стоматолог решил использовать веселящий газ в своей работе, причем первым подопытным вызвался быть сам. На следующий день Уэллс и Гарднер Колтон, организатор шоу, уже испытали веселящий газ в офисе Уэллса. Газ действовал замечательно.

Вскоре после этого испытали и эфир в качестве анестезии при длительных операций, хотя кто на самом деле стоял за привлечением этого средства, так доподлинно и неизвестно.


Многие изменившие мир изобретения появились именно в период промышленной революции. Камера не была одним из них. По сути, предшественник камеры, известный как камера-обскура, появился еще в конце 1500-х годов.

Однако сохранение снимков камеры долгое время было проблемой, особенно если у вас не было времени, чтобы отрисовать их. Затем пришел Никефор Ньепс. В 1820-х годах французу пришла в голову идея наложить мелованную бумагу, наполненную светочувствительными химическими веществами, на изображение, проецируемое камерой-обскурой. Спустя восемь часов появилась первая в мире фотография.

Понимая, что восемь часов - это слишком долгое время для позирования в режиме съемки семейного портрета, Ньепс объединил силы с Луи Дагером, чтобы улучшить свою конструкцию, и именно Дагер продолжал дело Ньепса после его смерти в 1833 году. Так называемый даггеротип сначала вызвал энтузиазм во французском парламенте, а затем и во всем мире. Однако, хотя дагерротип мог создавать очень детальные изображения, с них нельзя было сделать реплику.

Современник Дагера, Уильям Генри Фокс Талбот, также работал над улучшением фотографических изображений в 1830-х годах и сделал первый негатив, через который свет мог высвечиваться на фотографической бумаге и создавать позитив. Похожие достижения начали быстро находить место, и постепенно камеры стали способны даже снимать движущиеся объекты, а время экспозиции - сокращаться. Фото лошади, сделанное в 1877 году, положило конец давним дебатам на тему того, отрываются ли все четыре ноги лошади от земли во время галопа (да). Поэтому в следующий раз, когда вы достанете свой смартфон, чтобы сделать снимок, на секунду задумайтесь о веках инноваций, которые позволили этому снимку родиться.

Фонограф


Ничто не может в полной мере повторить опыт живого выступления любимой группы. Не так давно живые выступления вообще были единственным способом прослушивания музыки. Томас Эдисон изменил это навсегда, разработав метод транскрибирования телеграфных сообщений, который привел его к идее фонографа. Идея проста, но прекрасна: записывающая игла выдавливает канавки, соответствующие звуковым волнам музыки или речи, во вращающемся цилиндре, покрытом оловом, а другая игла воспроизводит исходный звук на основе этих канавок.

В отличие от Бэббиджа и его десятилетних попыток увидеть свои проекты осуществленными, Эдисон поручил своему механику Джону Круэзи построить машину и спустя 30 часов получил в свои руки рабочий прототип. Но Эдисон не остановился на достигнутом. Его первые оловянные цилиндры могли воспроизвести музыку всего несколько раз, поэтому потом Эдисон заменил олово воском. К тому времени фонограф Эдисона уже не был единственным на рынке, а со временем люди начали отказываться от цилиндров Эдисона. Основной механизм сохранился и используется по сей день. Неплохо для случайного изобретения.

Паровой двигатель


Как сегодня нас очаровывает рокот двигателей V8 и скоростных реактивных самолетов, когда-то и паровые технологии были невероятными. К тому же это сыграло гигантскую роль в поддержке промышленной революции. До этой эпохи люди использовали лошадей и кареты, чтобы передвигаться, а практика добычи полезных ископаемых в шахтах была весьма трудоемкой и неэффективной.

Джеймс Уатт, шотландский инженер, не разработал паровой двигатель, но ему удалось сделать более эффективную версию такового в 1760-х годах путем добавления отдельного конденсатора. Это навсегда изменило горнодобывающую промышленность.

Изначально некоторые изобретатели использовали паровой двигатель для выкачки и удаления воды из шахт, что давало улучшенный доступ к ресурсам. По мере того как эти двигатели приобретали популярность, инженеры задавались вопросом, как их можно улучшить. Версия парового двигателя Уатта не нуждалась в охлаждении после каждого удара, которым сопровождалась добыча ресурсов в то время.

Другие же задавались вопросом: что, если вместо того, чтобы транспортировать сырье, товары и людей на лошади, задействовать машину на паровой тяге? Эти мысли вдохновили изобретателей на исследование потенциала паровых двигателей за пределами горнодобывающего мира. Модификация парового двигателя Уатта привела к другим разработкам промышленной революции, включая первые паровозы и суда на паровой тяге.

Следующее изобретение, возможно, менее известно, но обладает определенно важным значением.

Консервация


Откройте кухонный шкаф и точно обнаружите хоть одно полезное изобретение промышленной революции. Тот же период, который подарил нам паровой двигатель, изменил наш способ хранения еды.

После распространения Великобритании в другие части мира, изобретения начали подпитывать промышленную революцию с постоянной скоростью. К примеру, такой случай произошел с французским шеф-поваром и новатором по имени Николя Аппер. В поисках путей сохранения продуктов без потери вкуса и свежести Аппер регулярно экспериментировал с хранением еды в контейнерах. В конце концов он пришел к выводу, что хранение еды, сопряженное с сушкой или солью, не приводит к улучшению вкусовых качеств, а совсем наоборот.

Аппер подумал, что хранение продуктов в контейнерах будет особенно полезным для моряков, страдающих от недоедания в море. Француз работал над техникой кипячения, которая заключалась в помещении еды в банку, уплотнения, а затем кипячения в воде для создания вакуумного уплотнения. Аппер достиг своей цели, разработав специальный автоклав для консервации в начале 1800-х годов. Основная концепция сохранилась до сих пор.


До появления смартфонов и ноутбуков люди все еще продолжали пользоваться такой технологией промышленной революции, как телеграф - хотя и значительно меньше, чем раньше.

Через электрическую систему сетей телеграф мог передавать сообщения из одного места в другое на большие расстояния. Получатель сообщения должен был интерпретировать маркировку, произведенную машиной, с помощью азбуки Морзе.

Первое сообщение было отправлено в 1844 году Сэмюэлем Морзе, изобретателем телеграфа, и оно точно передает его волнение. Он передал «Что творит Господь?» с помощью своей новой системы, намекая на то, что обнаружил нечто крупное. Так и было. Телеграф Морзе позволил людям общаться практически мгновенно на большом расстоянии.

Информация, передаваемая с помощью телеграфных линий, также серьезно поспособствовала развитию СМИ и позволила правительствам быстрее обмениваться информацией. Развитие телеграфа даже породило первую службу новостей, Associated Press. В конце концов, изобретение Морзе соединило Америку с Европой - и это было очень важно на то время.

Прялка «Дженни»


Будь то носки или что-нибудь из модных предметов одежды, именно достижения текстильной промышленности в период промышленной революции сделали возможными эти вещи для масс.

Прялка «Дженни», или прядильная машина Харгривса, внесла большой вклад в развитие этого процесса. После того как сырье - хлопок или шерсть - собирается, из него нужно сделать пряжу, и зачастую эта работа весьма кропотлива для людей.

Джеймс Харгривс решил этот вопрос. Принимая вызов британского Королевского общества искусств, Харгривс разработал устройство, которое намного перевыполнило требования конкурса, чтобы оно сплетало не менее шести пряж одновременно. Харгривс построил машину, которая выдавала восемь потоков одновременно, что резко повышало эффективность этой деятельности.

Устройство состояло из прялки, которая контролировала поток материала. На одном конце устройства находился вращающийся материал, а на другом нити собирались в пряжу из-под ручного колеса.

Дороги и шахты


Создать инфраструктуру для поддержки промышленной революции было не так легко. Спрос на металлы, в том числе железо, подстрекал промышленность придумывать более эффективные методы добычи и транспортировки сырья.

В течение нескольких десятилетий железодобывающие компании поставляли большое количество железа фабрикам и производственным компаниям. Для получения дешевого металла горнодобывающие компании поставляли больше чугуна, нежели кованого железа. Кроме того, люди стали использовать металлургию или просто исследовать физические свойства материалов в промышленных условиях.

Массовая добыча железа позволила механизировать другие изобретения промышленной революции. Без металлургической промышленности не развились бы железные дороги, паровозы, мог произойти застой в развитии транспорта и других отраслей.