Сказки        25.05.2022   

Световая стадия фотосинтеза. Процесс фотосинтез: кратко и понятно и для детей

Фотосинтез — синтез органических соединений из неорганических за счет энергии света (hv). Суммарное уравнение фотосинтеза:

6CO 2 + 6H 2 O → C 6 H 12 O 6 + 6O 2

Фотосинтез протекает при участии фотосинтезирующих пигментов, обладающих уникальным свойством преобразования энергии солнечного света в энергию химической связи в виде АТФ. Фотосинтезирующие пигменты представляют собой белковоподобные вещества. Наиболее важный из них — пигмент хлорофилл. У эукариот фотосинтезирующие пигменты встроены во внутреннюю мембрану пластид, у прокариот — во впячивания цитоплазматической мембраны.

Строение хлоропласта очень похоже на строение митохондрии. Во внутренней мембране тилакоидов граны содержатся фотосинтетические пигменты, а также белки цепи переноса электронов и молекулы фермента АТФ-синтетазы.

Процесс фотосинтеза состоит из двух фаз: световой и темновой.

Световая фаза фотосинтеза протекает только на свету в мембране тилакоидов граны. В этой фазе происходит поглощение хлорофиллом квантов света, образование молекулы АТФ и фотолиз воды.

Под действием кванта света (hv) хлорофилл теряет электроны, переходя в возбужденное состояние:

Хл → Хл + e —

Эти электроны передаются переносчиками на наружную, т.е. обращенную к матриксу поверхность мембраны тилакоидов, где накапливаются.

Одновременно внутри тилакоидов происходит фотолиз воды, т.е. ее разложение под действием света

2H 2 O → O 2 +4H + + 4e —

Образующиеся электроны передаются переносчиками к молекулам хлорофилла и восстанавливают их: молекулы хлорофилла возвращаются в стабильное состояние.

Протоны водорода, образовавшиеся при фотолизе воды, накапливаются внутри тилакоида, создавая Н + -резервуар. В результате внутренняя поверхность мембраны тилакоида заряжается положительно (за счет Н +), а наружная — отрицательно (за счет e —). По мере накопления по обе стороны мембраны противоположно заряженных частиц нарастает разность потенциалов. При достижении критической величины разности потенциалов сила электрического поля начинает проталкивать протоны через канал АТФ-синтетазы. Выделяющаяся при этом энергия используется для фосфорилирования молекул АДФ:

АДФ + Ф → АТФ

Образование АТФ в процессе фотосинтеза под действием энергии света называются фотофосфорилированием .

Ионы водорода, оказавшись на наружной поверхности мембраны тилакоида, встречаются там с электронами и образуют атомарный водород, который связывается с молекулой-переносчиком водорода НАДФ (никотинамидадениндинуклеотидфосфат):

2H + + 4e — + НАДФ + → НАДФ H 2

Таким образом, во время световой фазы фотосинтеза происходят три процесса: образование кислорода вследствие разложения воды, синтез АТФ, образование атомов водорода в форме НАДФ H 2 . Кислород диффундирует в атмосферу, АТФ и НАДФ H 2 участвуют в процессах темновой фазы.

Темновая фаза фотосинтеза протекает в матриксе хлоропласта как на свету, так и в темноте и представляет собой ряд последовательных преобразований CO 2 , поступающего из воздуха, в цикле Кальвина. Осуществляются реакции темновой фазы за счет энергии АТФ. В цикле Кальвина CO 2 связывается с водородом из НАДФ H 2 с образованием глюкозы.

В процессе фотосинтеза кроме моносахаридов (глюкоза и др.) синтезируются мономеры других органических соединений — аминокислоты, глицерин и жирные кислоты. Таким образом, благодаря фотосинтезу растения обеспечивают себя и все живое на Земле необходимыми органическими веществами и кислородом.

Сравнительная характеристика фотосинтеза и дыхания эукариот приведена в таблице:

Сравнительная характеристика фотосинтеза и дыхания эукариот
Признак Фотосинтез Дыхание
Уравнение реакции 6CO 2 + 6H 2 O + Энергия света → C 6 H 12 O 6 + 6O 2 C 6 H 12 O 6 + 6O 2 → 6H 2 O + Энергия (АТФ)
Исходные вещества Углекислый газ, вода
Продукты реакции Органические вещества, кислород Углекислый газ, вода
Значение в круговороте веществ Синтез органических веществ из неорганических Разложение органических веществ до неорганических
Превращение энергии Превращение энергии света в энергию химических связей органических веществ Превращение энергии химических связей органических веществ в энергию макроэргических связей АТФ
Важнейшие этапы Световая и темновая фаза (включая цикл Кальвина) Неполное окисление (гликолиз) и полное окисление (включая цикл Кребса)
Место протекания процесса Хлоропласта Гиалоплазма (неполное окисление) и митохондрии (полное окисление)

Более точно: в темновую фазу происходит связывание углекислого газа (CO 2).

Процесс этот многоступенчатый, в природе существуют два основных пути: C 3 -фотосинтез и C 4 -фотосинтез. Латинская буква C обозначает атом углерода, цифра после нее - количество атомов углерода в первичном органическом продукте темновой фазы фотосинтеза. Так в случае C 3 -пути первичным продуктом считается трехуглеродная фосфоглицериновая кислота, обозначаемая как ФГК. В случае C 4 -пути первым органическим веществом при связывание углекислого газа является четырехуглеродная щавелевоуксусная кислота (оксалоацетат).

C 3 -фотосинтез также называется циклом Кальвина в честь изучившего его ученого. C 4 -фотосинтез включает в себя цикл Кальвина, однако состоит не только из него и называется циклом Хэтча-Слэка. В умеренных широтах обычны C 3 -растения, в тропических - C 4 .

Темновые реакции фотосинтеза протекают в строме хлоропласта .

Цикл Кальвина

Первой реакцией цикла Кальвина является карбоксилирование рибулозо-1,5-бифосфата (РиБФ). Карбоксилирование - это присоединение молекулы CO 2 , в результате чего образуется карбоксильная группа -COOH. РиБФ - это рибоза (пятиуглеродный сахар), у которой к концевым атомам углерода присоединены фосфатные группы (образуемые фосфорной кислотой):

Химическая формула РиБФ

Реакция катализируется ферментом рибулозо-1,5-бифосфат-карбоксилаза-оксигеназа (РуБисКО ). Он может катализировать не только связывание углекислого газа, но и кислорода, о чем говорит слово «оксигеназа» в его названии. Если РуБисКО катализирует реакцию присоединения кислорода к субстрату, то темновая фаза фотосинтеза идет уже не по пути цикла Кальвина, а по пути фотодыхания , что в принципе является вредным для растения.

Катализ реакции присоединения CO 2 к РиБФ происходит в несколько шагов. В результате образуется неустойчивое шестиуглеродное органическое соединение, которое тут же распадается на две трехуглеродные молекулы фосфоглицериновой кислоты (ФГК).

Химическая формула фосфоглицериновой кислоты

Далее ФГК за несколько ферментативных реакций, протекающих с затратой энергии АТФ и восстановительной силы НАДФ·H 2 , превращается в фосфоглицериновый альдегид (ФГА), также называемый триозофосфатом .

Меньшая часть ФГА выходит из цикла Кальвина и используется для синтеза более сложных органических веществ, например глюкозы. Она, в свою очередь, может полимеризоваться до крахмала. Другие вещества (аминокислоты, жирные кислоты) образуются при участии различных исходных веществ. Такие реакции наблюдаются не только в растительных клетках. Поэтому, если рассматривать фотосинтез как уникальное явление содержащих хлорофилл клеток, то он заканчивается синтезом ФГА, а не глюкозы.

Большая часть молекул ФГА остается в цикле Кальвина. С ним происходит ряд превращений, в результате которых ФГА превращается в РиБФ. При этом также используется энергия АТФ. Таким образом, РиБФ регенерируется для связывания новых молекул углекислого газа.

Цикл Хэтча-Слэка

У многих растений жарких мест обитания темновая фаза фотосинтеза несколько сложнее. В процессе эволюции C 4 -фотосинтез возник как более эффективный способ связывания углекислого газа, когда в атмосфере возросло количество кислорода, и РуБисКО стал тратиться на неэффективное фотодыхание.

У C 4 -растений существует два типа фотосинтезирующих клеток. В хлоропластах мезофилла листьев происходит световая фаза фотосинтеза и часть темновой, а именно связывание CO 2 с фосфоенолпируватом (ФЕП). В результате образуется четырехуглеродная органическая кислота. Далее эта кислота транспортируется в хлоропласты клеток обкладки проводящего пучка. Здесь от нее ферментативно отщепляется молекула CO 2 , которая далее поступает в цикл Кальвина. Оставшаяся после декарбоксилирования трехуглеродная кислота - пировиноградная - возвращается в клетки мезофилла, где снова превращается в ФЕП.

Хотя цикл Хэтча-Слэка более энергозатратный вариант темновой фазы фотосинтеза, но фермент связывающий CO 2 и ФЕП более эффективный катализатор, чем РуБисКО. Кроме того, он не вступает в реакцию с кислородом. Транспорт CO 2 с помощью органической кислоты в более глубоколежащие клетки, к которым затруднен приток кислорода, приводит к тому, что концентрация углекислого газа здесь увеличивается, и РуБисКО почти не расходуется на связывание молекулярного кислорода.

Как объяснить такой сложный процесс, как фотосинтез, кратко и понятно? Растения являются единственными живыми организмами, которые могут производить свои собственные продукты питания. Как они это делают? Для роста и получают все необходимые вещества из окружающей среды: углекислый газ - из воздуха, воду и - из почвы. Также они нуждаются в энергии, которую получают из солнечных лучей. Эта энергия запускает определенные химические реакции, во время которых углекислый газ и вода превращаются в глюкозу (питание) и и есть фотосинтез. Кратко и понятно суть процесса можно объяснить даже детям школьного возраста.

"Вместе со светом"

Слово "фотосинтез" происходит от двух греческих слов - "фото" и "синтез", сочетание который в переводе означает "вместе со светом". В солнечная энергия преобразуется в химическую энергию. Химическое уравнение фотосинтеза:

6CO 2 + 12H 2 O + свет = С 6 Н 12 О 6 + 6O 2 + 6Н 2 О.

Это означает, что 6 молекул углекислого газа и двенадцать молекул воды используются (вместе с солнечным светом) для производства глюкозы, в итоге образуются шесть молекул кислорода и шесть молекул воды. Если изобразить это в виде словесного уравнения, то получится следующее:

Вода + солнце => глюкоза + кислород + вода.

Солнце является очень мощным источником энергии. Люди всегда стараются использовать его для выработки электричества, утепления домов, нагревания воды и так далее. Растения "придумали", как использовать солнечную энергию еще миллионы лет назад, потому что это было нужно для их выживания. Фотосинтез кратко и понятно можно объяснить таким образом: растения используют световую энергию солнца и преобразуют ее в химическую энергию, результатом которой является сахар (глюкоза), избыток которого хранится в виде крахмала в листьях, корнях, стеблях и семенах растения. Энергия солнца передается растениям, а также животным, которые эти растения едят. Когда растение нуждается в питательных веществах для роста и других жизненных процессов, эти запасы оказываются очень полезными.

Как растения поглощают энергию солнца?

Рассказывая про фотосинтез кратко и понятно, стоит затронуть вопрос о том, каким образом растениям удается поглощать солнечную энергию. Это происходит благодаря особой структуре листьев, включающей в себя зеленые клетки - хлоропласты, которые содержат специальное вещество под названием хлорофилл. Это который придает листьям зеленый цвет и отвечает за поглощение энергии солнечного света.


Почему большинство листьев широкие и плоские?

Фотосинтез происходит в листьях растений. Удивительным фактом является то, что растения очень хорошо приспособлены для улавливания солнечного света и поглощения углекислого газа. Благодаря широкой поверхности будет захватываться гораздо больше света. Именно по этой причине солнечные панели, которые иногда устанавливают на крышах домов, также широкие и плоские. Чем больше поверхность, тем лучше происходит поглощение.

Что еще важно для растений?

Как и люди, растения также нуждаются в полезных и питательных веществах, чтобы сохранить здоровье, расти и выполнять хорошо свои жизненные функции. Они получают растворенные в воде минеральные вещества из почвы через корни. Если в почве не хватает минеральных питательных веществ, растение не будет развиваться нормально. Фермеры часто проверяют почву для того, чтобы убедиться, что в ней имеется достаточное количество питательных веществ для роста культур. В противном случае прибегают к использованию удобрений, содержащих основные минералы для питания и роста растений.

Почему фотосинтез так важен?

Объясняя фотосинтез кратко и понятно для детей, стоит рассказать, что этот процесс является одной из наиболее важных химических реакций в мире. Какие существуют причины для такого громкого утверждения? Во-первых, фотосинтез кормит растения, которые, в свою очередь, кормят всех остальных живых существ на планете, включая животных и человека. Во-вторых, в результате фотосинтеза в атмосферу выделяется необходимый для дыхания кислород. Все живые существа вдыхают кислород и выдыхают углекислый газ. К счастью, растения делают все наоборот, поэтому они очень важны для человека и животных, так как дают им возможность дышать.

Удивительный процесс

Растения, оказывается, тоже умеют дышать, но, в отличие от людей и животных, они поглощают из воздуха углекислый газ, а не кислород. Растения тоже пьют. Вот почему нужно поливать их, иначе они умрут. При помощи корневой системы вода и питательные вещества транспортируются во все части растительного организма, а через маленькие отверстия на листиках происходит поглощение углекислого газа. Пусковым механизмом для запуска химической реакции является солнечный свет. Все полученные продукты обмена используются растениями для питания, кислород выделяется в атмосферу. Вот так можно объяснить кратко и понятно, как происходит процесс фотосинтеза.

Фотосинтез: световая и темновая фазы фотосинтеза

Рассматриваемый процесс состоит из двух основных частей. Существуют две фазы фотосинтеза (описание и таблица - далее по тексту). Первая называется световой фазой. Она происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента АТФ-синтетазы. Что еще скрывает фотосинтез? Световая и сменяют друг друга по мере наступления дня и ночи (циклы Кальвина). Во время темновой фазы происходит производство той самой глюкозы, пищи для растений. Этот процесс называют еще независимой от света реакцией.

Световая фаза Темновая фаза

1. Реакции, происходящие в хлоропластах, возможны только при наличии света. В этих реакциях энергия света преобразуется в химическую энергию

2. Хлорофилл и другие пигменты поглощают энергию от солнечного света. Эта энергия передается на фотосистемы, ответственные за фотосинтез

3. Вода используется для электронов и ионов водорода, а также участвует в производстве кислорода

4. Электроны и ионы водорода используются для создания АТФ (молекула накопления энергии), которая нужна в следующей фазе фотосинтеза

1. Реакции внесветового цикла протекают в строме хлоропластов

2. Углекислый газ и энергия от АТФ используются в виде глюкозы

Заключение

Из всего вышесказанного можно сделать следующие выводы:

  • Фотосинтез - это процесс, который позволяет получать энергию от солнца.
  • Световая энергия солнца преобразуется в химическую энергию хлорофиллом.
  • Хлорофилл придает растениям зеленый цвет.
  • Фотосинтез происходит в хлоропластах клеток листьев растений.
  • Углекислый газ и вода необходимы для фотосинтеза.
  • Углекислый газ поступает в растение через крошечные отверстия, устьица, через них же выходит кислород.
  • Вода впитывается в растение через его корни.
  • Без фотосинтеза в мире не было бы еды.

Тема 3 Этапы фотосинтеза

Раздел 3 Фотосинтез

1.Световая фаза фотосинтеза

2.Фотосинтетическое фосфорилирование

3.Пути фиксации СО 2 при фотосинтезе

4.Фотодыхание

Сущность световой фазы фотосинтеза состоит в поглощении лучистой энергии и ее трансформации в ассимиляционную силу (АТФ и НАДФ-Н), необходимую для восстановления углерода в темновых реакциях. Сложность процессов преобразования свето­вой энергии в химическую требует их строгой мембранной орга­низации. Световая фаза фотосинтеза происходит в гранах хлоро­пласта.

Таким образом, фотосинтетическая мембрана осуществляет очень важную реакцию: она превращает энергию поглощенных квантов све­та в окислительно-восстановительный потенциал НАДФ-Н и в потен­циал реакции переноса фосфорильной группы в молекуле АТФ При этом происходит преобразование энергии из очень короткоживущей ее формы в форму достаточно долгоживущую. Стабилизированная энергия может быть позже использована в биохимических реакциях растительной клетки, в том числе и в реакциях, приводящих к восста­новлению углекислоты.

Пять основных полипептидных комплексов встроены во внутренние мембраны хлоропластов : комплекс фотосистемы I (ФС I), комплекс фотосистемы II (ФСII), светособирающий комплекс II (ССКII), цитохромный b 6 f-комплекс и АТФ-синтаза (CF 0 – CF 1 -комплекс). Комплексы ФСI, ФСII и ССКII содержат пигменты (хлорофиллы, каротиноиды), большинство которых функциониру­ют как пигменты-антенны, собирающие энергию для пигментов реакционных центров ФСI и ФСII. Комплексы ФСI и ФСII, а также цитохромный b 6 f -ком­плекс имеют в своем составе редокс-кофакторы и участвуют в фотосинтети­ческом транспорте электронов. Белки этих комплексов отличаются высоким содержанием гидрофобных аминокислот, что обеспечивает их встраивание в мембрану. АТФ-синтаза (CF 0 – CF 1 -комплекс) осуществляет синтез АТФ. Кроме крупных полипептидных комплексов в мембранах тилакоидов име­ются небольшие белковые компоненты - пластоцианин, ферредоксин и ферредоксин-НАДФ-оксидоредуктаза, расположенные на поверхности мембран. Они входят в электрон-транспортную систему фотосинтеза.

В световом цикле фотосинтеза происходят следующие процессы: 1) фотовозбуждение молекул фотосинтетических пигментов; 2) мигра­ция энергии с антенны на реакционный центр; 3) фотоокисление мо­лекулы воды и выделение кислорода; 4) фотовосстановление НАДФ до НАДФ-Н; 5) фотосинтетическое фосфорилирование, образование АТФ.

Пигменты хлоропластов объединены в функциональные ком­плексы - пигментные системы, в которых реакционный центр - хлорофилл а, осуществляющий фотосенсибилизацию, связан процессами переноса энергии с антенной, состоящей из светособирающих пигментов. Современная схема фотосинтеза высших растений включает две фотохимические реакции, осуществляе­мые с участием двух различных фотосистем. Предположение об их существовании было высказано Р. Эмерсоном в 1957 г. на основании обнаруженного им эффекта усиления действия длин­новолнового красного света (700 нм) совместным освещением более коротковолновыми лучами (650 нм). Впоследствии было установлено, что фотосистема II поглощает более коротковолновые лучи по сравнению с ФСI. Фотосинтез идет эффективно только при их совместном функционировании, что объясняет эффект усиления Эмерсона.


В состав ФСI, в качестве реакционного центра входит димер хлорофилла а с максимумом поглощения света 700 нм (Р 700), а также хлорофиллы а 675-695 , играющие роль антенного компонен­та. Первичным акцептором электронов в этой системе является мономерная форма хлорофилла а 695 , вторичными акцепторами - железосерные белки (-FeS). Комплекс ФСI под действием света восстанавливает железосодержащий белок - ферредоксин (Фд) и окисляет медьсодержащий белок - пластоцианин (Пц).

ФСII включает реакционный центр, содержащий хлорофилл а (Р 680) и антенные пигменты - хлорофиллы а 670-683 . Первичным акцептором электронов является феофитин (Фф), передающий электроны на пластохинон. В состав ФСII входит также белко­вый комплекс S-системы, окисляющий воду, и переносчик элек­тронов Z. Этот комплекс функционирует с участием марганца, хлора и магния. ФСII восстанавливает пластохинон (PQ) и окис­ляет воду с выделением О 2 и протонов.

Связующим звеном между ФСII и ФСI служат фонд пластохинонов, белковый цитохромный комплекс b 6 f и пластоциа­нин.

В хлоропластах растений на каждый реакционный центр при­ходится примерно 300 молекул пигментов, которые входят в состав антенных или светособирающих комплексов. Из ламелл хлоропластов выделен светособирающий белковый комплекс, со­держащий хлорофиллы а и b и каротиноиды (ССК), тесно свя­занный с ФСП, и антенные комплексы, непосредственно входя­щие в состав ФСI и ФСII (фокусирующие антенные компоненты фотосистем). Половина белка тилакоидов и около 60 % хлоро­филла локализованы в ССК. В каждом ССК содержится от 120 до 240 молекул хлорофилла.

Антенный белковый комплекс ФС1 содержит 110 молекул хлорофиллов a 680-695 на один Р 700 , из них 60 молекул - компо­ненты антенного комплекса, который можно рассматривать как ССК ФСI. Антенный комплекс ФСI также содержит b-каротин.

Антенный белковый комплекс ФСII содержит 40 молекул хлорофиллов а с максимумом поглощения 670-683 нм на один Р 680 и b-каротин.

Хромопротеины антенных комплексов не обладают фотохи­мической активностью. Их роль состоит в поглощении и переда­че энергии квантов на небольшое количество молекул реакцион­ных центров Р 700 и Р 680 , каждая из которых связана с цепью транспорта электронов и осуществляет фотохимическую реак­цию. Организация электронно-транспортных цепей (ЭТЦ) при всех молекулах хлорофилла нерациональна, так как даже на пря­мом солнечном свету на молекулу пигмента кванты света попа­дают не чаще одного раза за 0,1 с.

Физические механизмы процессов поглощения, запасания и миграции энер­гии молекулами хлорофилла достаточно хорошо изучены. Поглощение фотона (hν) обусловлено переходом системы в различные энер­гетические состояния. В молекуле в отличие от атома возможны электронные, колебательные и вращательные движения, и общая энергия молекулы равна сумме этих видов энергий. Основной показатель энергии поглощающей систе­мы - уровень ее электронной энергии, определяется энергией внешних элек­тронов на орбите. Согласно принципу Паули, на внешней орбите находятся два электрона с противоположно направленными спинами, в результате чего образуется устойчивая система спаренных электронов. Поглощение энергии света сопровождается переходом одного из электронов на более высокую ор­биту с запасанием поглощенной энергии в виде энергии электронного воз­буждения. Важнейшая характеристика поглощающих систем - избирательность поглощения, определяемая электронной конфигурацией молекулы. В сложной органической молекуле есть определенный набор свободных орбит, на кото­рые возможен переход электрона при поглощении квантов света. Согласно «пра­вилу частот» Бора, частота поглощаемого или испускаемого излучения v дол­жна строго соответствовать разности энергий между уровнями:

ν = (E 2 – E 1)/h,

где h - постоянная Планка.

Каждый электронный переход соответствует определенной полосе погло­щения. Таким образом, электронная структура молекулы определяет характер электронно-колебательных спектров.

Запасание поглощенной энергии связано с возникновением электронно-воз­бужденных состояний пигментов. Физические закономерности возбужденных со­стояний Мg-порфиринов могут быть рассмотрены на основе анализа схемы элек­тронных переходов этих пигментов (рисунок).

Известно два основных типа воз­бужденных состояний - синглетные и триплетные. Они отличаются по энергии и состоянию спина электрона. В синглетном возбужденном состоянии спины электронов на основном и возбужденном уровнях остаются антипараллельны­ми, при переходе в триплетное состояние происходит поворот спина возбужден­ного электрона с образованием бирадикальной системы. При поглощении фото­на молекула хлорофилла переходит из основного (S 0) в одно из возбужденных синглетных состояний – S 1 или S 2 , что сопровождается переходом электрона на возбужденный уровень с более высокой энергией. Возбужденное состояние S 2 очень нестабильно. Электрон быстро (в течение 10 -12 с) теряет часть энергии в виде тепла и опускается на нижний колебательный уровень S 1 , где может находиться в течение 10 -9 с. В состоянии S 1 может произойти обращение спина электрона и переход в триплетное состояние Т 1 , энергия которого ниже S 1 .

Возможно несколько путей дезактивации возбужденных состояний:

· излучение фотона с переходом системы в основное состояние (флуорес­ценция или фосфоресценция);

· перенос энергии на другую молекулу;

· использование энергии возбуждения в фотохимической реакции.

Миграция энергии между молекулами пигментов может осуществляться по следующим механизмам. Индуктивно-резонансный механизм (механизм Фёрстера) возможен при условии, когда переход электрона оптически разрешен и обмен энергией осуществляется по экситонному механизму. Понятие «экситон» означает электронно-возбужденное состояние молекулы, где возбужденный электрон остается связанным с молекулой пигмента и разделения зарядов не происходит. Перенос энергии от возбужденной молекулы пигмента к другой молекуле осуществляется путем безызлучательного переноса энергии возбуж­дения. Электрон в возбужденном состоянии представляет собой осциллиру­ющий диполь. Образующееся при этом переменное электрическое поле может вызвать аналогичные колебания электрона в другой молекуле пигмента при выполнении условий резонанса (равенство энергии между основным и воз­бужденным уровнями) и условий индукции, определяющих достаточно силь­ное взаимодействие между молекулами (расстояние не более 10 нм).

Обменно-резонансный механизм миграции энергии Теренина-Декстера имеет место в том случае, когда переход оптически запрещен и диполь при возбуж­дении пигмента не образуется. Для его осуществления необходим тесный кон­такт молекул (около 1 нм) с перекрыванием внешних орбиталей. В этих усло­виях возможен обмен электронами, находящимися как на синглетных, так и на триплетных уровнях.

В фотохимии имеется понятие о квантовом расходе процесса. Применительно к фотосинтезу этот показатель эффективности превращения световой энергии в хими­ческую энергию показывает, сколько квантов света по­глощено для того, чтобы выделилась одна молекула О 2 . Следует иметь в виду, что каждая молекула фотоактивно­го вещества одновременно поглощает только один квант света. Этой энергии достаточно, чтобы вызвать опреде­ленные изменения в молекуле фотоактивного вещества.

Величина, обратная квантовому расходу, носит название квантового выхода : количество выделенных молекул кислорода или поглощенных молекул углекис­лоты, приходящееся на один квант света. Этот показа­тель меньше единицы. Так, если на усвоение одной молекулы СО 2 расходуется 8 квантов света, то кванто­вый выход составляет 0,125.

Структура электрон-транспортной цепи фотосинтеза и характеристика ее компонентов. Электрон-транспортная цепь фотосинтеза включает довольно большое число компонентов, расположенных в мембранных структу­рах хлоропластов. Практически все компоненты, кроме хинонов, являются белками, содержащими функциональные группы, спо­собные к обратимым окислительно-восстановительным изменениям, и выполняющие функции переносчиков электронов или электронов со­вместно с протонами. Ряд переносчиков ЭТЦ включают металлы (же­лезо, медь, марганец). В качестве важнейших компонентов переноса электронов в фото­синтезе можно отметить следующие группы соединений: цитохромы, хиноны, пиридиннуклеотиды, флавопротеины, а также железопротеины, медьпротеины и марганецпротеины. Местоположение названных групп в ЭТЦ определяется в первую очередь величиной их окисли­тельно-восстановительного потенциала.

Представления о фотосинтезе, в ходе которого выделяется кисло­род, формировалось под влиянием Z-схемы электронного транспорта Р. Хилла и Ф. Бенделла. Эта схема была представлена на основе из­мерения окислительно-восстановительных потенциалов цитохромов в хлоропластах. Электрон-транспортная цепь является местом превращения физической энергии электрона в химическую энергию связей и включает ФС I и ФС II. Z-схема исходит из последовательного функционирования и объе­динения ФСII с ФСI.

Р 700 является первичным донором электронов, является хлорофиллом (по некоторым данным – димером хлорофилла а), передает электрон на промежуточный акцептор и может быть окислен фотохимическим путем. А 0 – промежуточный акцептор электронов – является димером хлорофилла а.

Вторичными акцепторами электронов являются связанные железосерные центры А и В. Элементом структуры железосерных белков является решетка из взаимосвязанных атомов железа и серы, которую называ­ют железосерным кластером.

Ферредоксин, растворимый в стромальной фазе хлоропласта желе­зо-белок, находящийся снаружи мембраны, осуществляет перенос электронов от реакционного центра ФСI к НАДФ в результате обра­зуется НАДФ-Н, необходимый для фиксации СО 2 . Все растворимые ферредоксины фотосинтезирующих организмов, выделяющих кислород (включая цианобактерии), относятся к типу 2Fe-2S.

Компонентом, переносящим электроны, является также цитохром f, связанный с мембраной. Акцептором электронов для связанного с мембраной цитохрома f и непосредственным донором для хлорофилл-белкового ком­плекса реакционного центра является медьсодержащий белок, кото­рый назван «распределительным переносчиком», - пластоцианин.

Хлоропласты также содержат цитохромы b 6 , и b 559 . Цитохром b 6 , яв­ляющийся полипептидом с молекулярной массой 18 кДа, участвует в циклическом переносе электрона.

Комплекс b 6 /f - это интегральный мембранный комплекс полипептидов, содержащий цитохромы типа b и f. Комплекс цитохромов b 6 /f катализирует транспорт электронов между двумя фотосистемами.

Комплекс цитохромов b 6 /f восстанав­ливает небольшой пул водорастворимого металлопротеина - пластоцианин (Пц), который служит для передачи восстановительных эквивалентов на комплекс ФС I. Пластоцианин - небольшой по размеру гидро­фобный металлопротеин, включающий атомы меди.

Участниками первичных реакций в реакционном центре ФС II яв­ляется первичный донор электронов Р 680 , промежуточный акцептор феофитин и два пластохинона (обычно обозначаемые Q и В), распо­ложенные близко к Fe 2+ . Первичным донором электронов является одна из форм хлорофилла а, получившая название Р 680 , поскольку значительное изменение поглощения света наблюдалось при 680 им.

Первичным акцептором электронов в ФС II является пластохинон. Предполагают, что Q является железо-хиноновым комплексом. Вторичным акцептором электронов в ФС II является также пласто­хинон, обозначаемый В, и функционирующий последова­тельно с Q. Система пластохинон/пластохинон переносит одновре­менно с двумя электронами еще два протона и в связи с этим является двухэлектронной редокс-системой. По мере того, как два электрона передаются по ЭТЦ через систему пластохи­нон/пластохинон, два протона переносятся через мембрану тилакоида. Считают, что градиент концентрации протонов, возникающий при этом, и является движущей силой процесса синтеза АТФ. Следствием этого является повышение концентрации протонов внутри тилакоидов и возникнове­ние значительного градиента рН между внешней и внутренней сторо­ной тилакоидной мембраны: из внутренней стороны среда является более кислой, чем из внешней.

2. Фотосинтетическое фосфорилирование

Донором электронов для ФС-2 служит вода. Моле­кулы воды, отдавая электроны, распадаются на свобод­ный гидроксил ОН И протон Н + . Свободные гидро­ксильные радикалы, реагируя друг с другом, дают Н 2 О и О 2 . Предполагается, что при фотоокисле­нии воды принимают участие ионы марганца и хлора в качестве кофакторов.

В процессе фотолиза воды проявляется суть фото­химической работы, осуществляемой при фотосинте­зе. Но окисление воды происходит при условии, что выбитый из молекулы П 680 электрон передается акцеп­тору и далее в электрон-транспортную цепь (ЭТЦ). В ЭТЦ фотосистемы-2 переносчиками элек­тронов служат пластохинон, цитохромы, пластоцианин (белок, содержащий медь), ФАД, НАДФ и др.

Выбитый из молекулы П 700 электрон захватывается белком, содержащим железо и серу, и передается на ферредоксин. В дальнейшем путь этого электрона мо­жет быть двояким. Один из этих путей состоит из по­очередного переноса электрона от ферредоксина че­рез ряд переносчиков снова к П 700 . Затем квант света выбивает следующий электрон из молекулы П 700 . Этот электрон доходит до ферредоксина и снова возвраща­ется к молекуле хлорофилла. Явно прослеживается цикличность процесса. При переносе электрона от ферредоксина энергия электронного возбуждения идет на образование АТФ из АДФ и Н з Р0 4 . Этот вид фото­фосфорилирования назван Р. Арноном циклическим . Циклическое фотофосфорилирование теоретически может протекать и при закрытых устьицах, ибо для него обмен с атмосферой необязателен.

Нециклическое фотофосфорилирование проте­кает с участием обеих фотосистем. В этом случае вы­битые из П 700 электроны и протон Н + доходит до фер­редоксина и переносятся через ряд переносчиков (ФАД и др.) на НАДФ с образованием восстановленно­го НАДФ·Н 2 . Последний, как сильный восстановитель, используется в темновых реакциях фотосинтеза. Одновременно молекула хлорофил­ла П 680 , поглотив квант света, также переходит в воз­бужденное состояние, отдавая один электрон. Пройдя через ряд переносчиков, электрон восполняет элект­ронную недостаточность в молекуле П 700 . Электронная же «дырка» хлорофилла П 680 восполняется за счет элек­трона от иона ОН - - одного из продуктов фотолиза воды. Энергия электрона, выбитого квантом света из П 680 , при переходе через электрон-транспортную цепь к фотосистеме 1 идет на осуществление фотофосфори­лирования. При нециклическом транспорте электронов, как видно из схемы, происходит фотолиз воды и выде­ление свободного кислорода.

Перенос электронов является основой рассмот­ренного механизма фотофосфорилирования. Англий­ский биохимик П. Митчелл выдвинул теорию фото­фосфорилирования, получившую название хемиосмо­тической теории. ЭТЦ хлоропластов, как известно, расположена в мембране тилакоида. Один из пере­носчиков электронов в ЭТЦ (пластохинон), по гипо­тезе П. Митчелла, переносит не только электроны, но и протоны (Н +), перемещая их через мембрану ти­лакоида в направлении снаружи внутрь. Внутри мем­браны тилакоида с накоплением протонов среда подкисляется и в связи с этим возникает градиент рН: наружная сторона становится менее кислой, чем внутренняя. Этот градиент повышается также благо­даря поступлению протонов - продуктов фотолиза воды.

Разность рН между наружной стороной мембра­ны и внутренней создает значительный источник энергии. С помощью этой энергии протоны по осо­бым канальцам в специальных грибовидных вырос­тах на наружной стороне мембраны тилакоида выб­расываются наружу. В указанных каналах находится фактор сопряжения (особый белок), который спосо­бен принимать участие в фотофосфорилировании. Предполагается, что таким белком является фермент АТФаза, катализирующий реакцию распада АТФ, но при наличии энергии перетекающих сквозь мембра­ну протонов - и ее синтез. Пока существует гради­ент рН и, следовательно, пока происходит перемеще­ние электронов по цепи переносчиков в фотосисте­мах, будет происходить и синтез АТФ. Подсчитано, что на каждые два электрона, прошедшие через ЭТЦ внутри тилакоида, накапливается четыре протона, а на каждые три протона, выброшенные с участием фактора сопряжения из мембраны наружу, синтези­руется одна молекула АТФ.

Таким образом, в результате световой фазы за счет энергии света образуются АТФ и НАДФН 2 , использу­емые в темновой фазе, а продукт фотолиза воды О 2 выделяется в атмосферу. Суммарное уравнение свето­вой фазы фотосинтеза может быть выражено так:

2Н 2 О + 2НАДФ + 2 АДФ + 2 Н 3 РО 4 → 2 НАДФН 2 + 2 АТФ + О 2